OptiFDTD Publication References – 2006 (and earlier)

Compatibility:

Listing of scientific papers, technical journals, periodicals, and conference publications which reference the use of OptiFDTD.

[1] Cheben, P. et. al.; A broad-band waveguide grating coupler with a subwavelength grating mirror. 18 pp. 13-15, 2006.

[2] P. Cheben et. al.; Subwavelength waveguide grating for mode conversion and light coupling in integrated optics. 14 pp. 4695-4702, 2006.

[3] Eric J. Kelmelis et. al.; Field-programmable gate array accelerates FDTD calculations. pp. 57-58, 2006.

[4] Cheben, P. et. al.; A broad-band waveguide grating coupler with a subwavelength grating mirror. 18 pp. 13-15, 2006.

[5] P. Cheben et. al.; Subwavelength waveguide grating for mode conversion and light coupling in integrated optics. 14 pp. 4695-4702, 2006.

[6] Eric J. Kelmelis et. al.; Field-programmable gate array accelerates FDTD calculations. pp. 57-58, 2006.

[7] Steven Dods et. al.; Advanced photonic circuit simulation. 5956 , 2005.

[8] Tzong-Yow Tsai et. al.; A novel ultracompact two-mode-interference wavelength division multiplexer for 1.5-/spl mu/m operation. 41 pp. 741-756, 2005.

[9] Paturi, Naveen et. al.; Analysis of cluster defects in photonic crystals for biosensor applications. 6005 pp. 146-151, 2005.

[10] Vittorio Passaro et. al.; Investigation of thermo-optic effect and multi-reflector tunable filter/multiplexer in SOI waveguides. 13 pp. 3429-3437, 2005.

[11] Steven Dods et. al.; Advanced photonic circuit simulation. 5956 , 2005.

[12] Tzong-Yow Tsai et. al.; A novel ultracompact two-mode-interference wavelength division multiplexer for 1.5-/spl mu/m operation. 41 pp. 741-756, 2005.

[13] Paturi, Naveen et. al.; Analysis of cluster defects in photonic crystals for biosensor applications. 6005 pp. 146-151, 2005.

[14] Vittorio Passaro et. al.; Investigation of thermo-optic effect and multi-reflector tunable filter/multiplexer in SOI waveguides. 13 pp. 3429-3437, 2005.

[15] Esinenco, D et. al.; SU-8 Micro-Biosensor Based on Mach-Zehnder Interferometer. 10 pp. 295-299, 2005.

[16] Michal Bordovsky et. al.; Waveguide design, modeling, and optimization: from photonic nanodevices to integrated photonic circuits. 5355 pp. 65-80, 2004.

[17] Tzong-Yow Tsai et. al.; A novel wavelength-division multiplexer using grating-assisted two-mode interference. 16 pp. 2251-2253, 2004.

[18] Jiazong Zhang et. al.; Calculating the coupling efficiency between single-mode fiber to photonic crystal fiber using the FDTD method. 5579 pp. 443-447, 2004.

[19] Peter Catrysse et. al.; One-mode model for patterned metal layers inside integrated color pixels. 29 pp. 974-976, 2004.

[20] Stoyan Tanev et. al.; The FDTD approach applied to light scattering from single biological cells. 5474 pp. 162-168, 2004.

[21] Stoyan Tanev et. al.; Simulation tools solve light-scattering problems from biological cells. 2004.

[22] Michal Bordovsky et. al.; Waveguide design, modeling, and optimization: from photonic nanodevices to integrated photonic circuits. 5355 pp. 65-80, 2004.

[23] Tzong-Yow Tsai et. al.; A novel wavelength-division multiplexer using grating-assisted two-mode interference. 16 pp. 2251-2253, 2004.

[24] Jiazong Zhang et. al.; Calculating the coupling efficiency between single-mode fiber to photonic crystal fiber using the FDTD method. 5579 pp. 443-447, 2004.

[25] Peter Catrysse et. al.; One-mode model for patterned metal layers inside integrated color pixels. 29 pp. 974-976, 2004.

[26] Stoyan Tanev et. al.; The FDTD approach applied to light scattering from single biological cells. 5474 pp. 162-168, 2004.

[27] Stoyan Tanev et. al.; Simulation tools solve light-scattering problems from biological cells. 2004.

[28] Richard Zhang et. al.; Finite-difference time-domain method guides optical design of metallic nanostructures. pp. 67-71, 2004.

[29] Aubuchon, M.S et. al.; Efficient, high power laser to multi-fiber coupler for triggering optically activated switches. 2 pp. 1186-1189, 2003.

[30] Jiazong Zhang ; Analyzing dispersive nonlinear optical devices by using FDTD method. 4833 pp. 753-761, 2003.

[31] Peter B. Catrysse et. al.; Integrated color pixels in 0.18-µm complementary metal oxide semiconductor technology. 20 pp. 2293-2306, 2003.

[32] Allen J. Whang et. al.; Multimode Interference All-Optical Logic Gates via Partially Nonlinear Propagation Region. 10 pp. 346-351, 2003.

[33] Jiazong Zhang ; Analyzing dispersive nonlinear optical devices by using FDTD method. 4833 pp. 753-761, 2003.

[34] Peter B. Catrysse et. al.; Integrated color pixels in 0.18-µm complementary metal oxide semiconductor technology. 20 pp. 2293-2306, 2003.

[35] Allen J. Whang et. al.; Multimode Interference All-Optical Logic Gates via Partially Nonlinear Propagation Region. 10 pp. 346-351, 2003.

[36] Szpulak, M. et. al.; Influence of temperature on birefringence and polarization mode dispersion in photonic crystal holey fibers. 2 pp. 89-92, 2002.

[37] Taflove, A; Prospects for Finite-Difference Time-Domain (FDTD) Computational Electrodynamics. 2002.

[38] Pierre Berini et. al.; Advances in the development of simulation tools for integrated optics devices: FDTD, BPM, and mode-solving techniques. 4277 pp. 1-20, 2001.