Listing of scientific papers, technical journals, periodicals, and conference publications which reference the use of OptiFDTD.

    • [1]
    • Cheben, P. et. al.; A broad-band waveguide grating coupler with a subwavelength grating mirror. 18 pp. 13-15, 2006.
    • [2]
    • P. Cheben et. al.; Subwavelength waveguide grating for mode conversion and light coupling in integrated optics. 14 pp. 4695-4702, 2006.
    • [3]
    • Eric J. Kelmelis et. al.; Field-programmable gate array accelerates FDTD calculations. pp. 57-58, 2006.
    • [4]
    • Cheben, P. et. al.; A broad-band waveguide grating coupler with a subwavelength grating mirror. 18 pp. 13-15, 2006.
    • [5]
    • P. Cheben et. al.; Subwavelength waveguide grating for mode conversion and light coupling in integrated optics. 14 pp. 4695-4702, 2006.
    • [6]
    • Eric J. Kelmelis et. al.; Field-programmable gate array accelerates FDTD calculations. pp. 57-58, 2006.
    • [7]
    • Steven Dods et. al.; Advanced photonic circuit simulation. 5956 , 2005.
    • [8]
    • Tzong-Yow Tsai et. al.; A novel ultracompact two-mode-interference wavelength division multiplexer for 1.5-/spl mu/m operation. 41 pp. 741-756, 2005.
    • [9]
    • Paturi, Naveen et. al.; Analysis of cluster defects in photonic crystals for biosensor applications. 6005 pp. 146-151, 2005.
    • [10]
    • Vittorio Passaro et. al.; Investigation of thermo-optic effect and multi-reflector tunable filter/multiplexer in SOI waveguides. 13 pp. 3429-3437, 2005.
    • [11]
    • Steven Dods et. al.; Advanced photonic circuit simulation. 5956 , 2005.
    • [12]
    • Tzong-Yow Tsai et. al.; A novel ultracompact two-mode-interference wavelength division multiplexer for 1.5-/spl mu/m operation. 41 pp. 741-756, 2005.
    • [13]
    • Paturi, Naveen et. al.; Analysis of cluster defects in photonic crystals for biosensor applications. 6005 pp. 146-151, 2005.
    • [14]
    • Vittorio Passaro et. al.; Investigation of thermo-optic effect and multi-reflector tunable filter/multiplexer in SOI waveguides. 13 pp. 3429-3437, 2005.
    • [15]
    • Esinenco, D et. al.; SU-8 Micro-Biosensor Based on Mach-Zehnder Interferometer. 10 pp. 295-299, 2005.
    • [16]
    • Michal Bordovsky et. al.; Waveguide design, modeling, and optimization: from photonic nanodevices to integrated photonic circuits. 5355 pp. 65-80, 2004.
    • [17]
    • Tzong-Yow Tsai et. al.; A novel wavelength-division multiplexer using grating-assisted two-mode interference. 16 pp. 2251-2253, 2004.
    • [18]
    • Jiazong Zhang et. al.; Calculating the coupling efficiency between single-mode fiber to photonic crystal fiber using the FDTD method. 5579 pp. 443-447, 2004.
    • [19]
    • Peter Catrysse et. al.; One-mode model for patterned metal layers inside integrated color pixels. 29 pp. 974-976, 2004.
    • [20]
    • Stoyan Tanev et. al.; The FDTD approach applied to light scattering from single biological cells. 5474 pp. 162-168, 2004.
    • [21]
    • Stoyan Tanev et. al.; Simulation tools solve light-scattering problems from biological cells. 2004.
    • [22]
    • Michal Bordovsky et. al.; Waveguide design, modeling, and optimization: from photonic nanodevices to integrated photonic circuits. 5355 pp. 65-80, 2004.
    • [23]
    • Tzong-Yow Tsai et. al.; A novel wavelength-division multiplexer using grating-assisted two-mode interference. 16 pp. 2251-2253, 2004.
    • [24]
    • Jiazong Zhang et. al.; Calculating the coupling efficiency between single-mode fiber to photonic crystal fiber using the FDTD method. 5579 pp. 443-447, 2004.
    • [25]
    • Peter Catrysse et. al.; One-mode model for patterned metal layers inside integrated color pixels. 29 pp. 974-976, 2004.
    • [26]
    • Stoyan Tanev et. al.; The FDTD approach applied to light scattering from single biological cells. 5474 pp. 162-168, 2004.
    • [27]
    • Stoyan Tanev et. al.; Simulation tools solve light-scattering problems from biological cells. 2004.
    • [28]
    • Richard Zhang et. al.; Finite-difference time-domain method guides optical design of metallic nanostructures. pp. 67-71, 2004.
    • [29]
    • Aubuchon, M.S et. al.; Efficient, high power laser to multi-fiber coupler for triggering optically activated switches. 2 pp. 1186-1189, 2003.
    • [30]
    • Jiazong Zhang ; Analyzing dispersive nonlinear optical devices by using FDTD method. 4833 pp. 753-761, 2003.
    • [31]
    • Peter B. Catrysse et. al.; Integrated color pixels in 0.18-µm complementary metal oxide semiconductor technology. 20 pp. 2293-2306, 2003.
    • [32]
    • Allen J. Whang et. al.; Multimode Interference All-Optical Logic Gates via Partially Nonlinear Propagation Region. 10 pp. 346-351, 2003.
    • [33]
    • Jiazong Zhang ; Analyzing dispersive nonlinear optical devices by using FDTD method. 4833 pp. 753-761, 2003.
    • [34]
    • Peter B. Catrysse et. al.; Integrated color pixels in 0.18-µm complementary metal oxide semiconductor technology. 20 pp. 2293-2306, 2003.
    • [35]
    • Allen J. Whang et. al.; Multimode Interference All-Optical Logic Gates via Partially Nonlinear Propagation Region. 10 pp. 346-351, 2003.
    • [36]
    • Szpulak, M. et. al.; Influence of temperature on birefringence and polarization mode dispersion in photonic crystal holey fibers. 2 pp. 89-92, 2002.
    • [37]
    • Taflove, A; Prospects for Finite-Difference Time-Domain (FDTD) Computational Electrodynamics. 2002.
    • [38]
    • Pierre Berini et. al.; Advances in the development of simulation tools for integrated optics devices: FDTD, BPM, and mode-solving techniques. 4277 pp. 1-20, 2001.