[1]           M.D. Feit and J.A. Fleck, Jr.: Light Propagation in Graded-Index Optical Fibers, Appl. Opt. 17, (1978): 3990-3998.

[2]           M.D. Feit and J.A. Fleck, Jr.: Analysis of Rib Waveguides and Couplers by the Propagating Beam Method, J. Opt. Soc. Am. A 7, (1990): 73-79.

[3]           D. Yevick and B. Hermansson: Efficient Beam Propagation Techniques, IEEE J. Quantum Electron. 29, (1990): 109-112.

[4]           T.B. Koch, J.B. Davies, and D. Wickramasingle: Finite Element/Finite Difference Propagation Algorithm for Integrated Optical Devices, Electron. Lett. 25, (1989): 514-516.

[5]           D. Yevick: A Guide to Electric Field Propagation Technique for Guided-Wave Optics, Opt. Quantum Electron. 26, (1994): S185-S197.

[6]           R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert: Numerical Techniques for Modeling Guided-Wave Photonic Devices, IEEE J. Quantum Electron. 6, (2000): 150-162.

[7]           W.P. Huang and C.L. Xu: Simulation of Three-Dimensional Optical Waveguide by a Full-Vector Beam Propagation Method: IEEE J. Select. Quantum Electron. 29, (1993): 2639-2649.

[8]           C.L. Xu, W.P. Huang, S.K. Chaudhuri, and J. Chrostowski: An Unconditionally Stable Vectorial Beam Propagation Method for 3-D Structures, IEEE Photon. Technol. Lett. 6, (1994): 549-551.

[9]           J. Yamauchi, T. Ando, and H. Nakano: Beam Propagation Analysis of Optical Fibers by Alternating Direction Implicit Method, Electron. Lett. 27, (1991): 1663-1665.

[10]         G.R. Hadley: Transparent Boundary Condition for the Beam Propagation Method, IEEE J. Quantum Electron. 28, (1992): 363-370.

[11]         Yasuyuki Arai, Akihiro Maruta, and Masanori Matsuhara: Transparent Boundary for the Finite- Element Beam Propagation Method, Opt. Lett. 18, (1993): 765-766.

[12]         J.P. Berengér: A Perfectly Matched Layer for the Absorption of Electromagnetic Waves, J. Comput. Phys. 114, (1994): 185-200.

[13]         F. Fogli, G. Bellanca, and P. Bassi: TBC and PML conditions for 2D and 3D BPM: A Comparison, Opt. Quantum Electron. 30, (1998): 443-456.

[14]         K. Kawano and T. Kitoh: Introduction to Optical Waveguide Analysis. John Wiley & Sons, Inc. (2001).

[15]         W.P. Huang, C.L. Xu, W. Lui, and K. Yokoyama: The Perfectly Matched Layer (PML) Boundary Condition for the Beam Propagation Method, IEEE Photon. Technol. Lett. 8, (1996): 649-651.

[16]         Ü. Pekel, and R. Mittra: A Finite-Element Method Frequency-Domain Application of the Perfectly Matched Layer (PML) Concept, Microwave and Opt. Technol. Lett. 9, (1995): 117-122.

[17]         M. Koshiba, Y. Tsuji, and M. Hikari: Finite Element Beam Propagation Method with Perfectly Matched Layer Boundary Conditions, IEEE Trans. on Magnetics 34, (1999): 1482-1485.

[18]         D. Jiménez, C. Ramirez, F. Pérez-Murano, and A. Guzmán: Implementation of Bérenger Layers as Boundary Bonditions for the Beam Propagation Method: Applications to Integrated Waveguides, Opt. Commun. 159, (1999): 43-48.

[19]         J. Yamauchi, J. Shibayama, and H. Nakano: Beam Propagation Method using Padé Approximant Operators, Trans. IEICE Jpn. J77-C-I, (1994): 490-494.

[20]         G.R. Hadley: Wide-Angle Beam Propagation using Padé Approximant Operators, Opt. Lett. 17, (1992): 1426-1428.

[21]         M. Koshiba and Y. Tsuji: A Wide-Angle Finite Element Beam Propagation Method, IEEE Photon. Technol. Lett. 8, (1996): 1208-1210.

[22]         G.A. Baker: Essential of Padé Approximants. Academic, New York, (1975).

[23]         Y. Chung and N. Dagli: Assessment of Finite Difference Beam Propagation, IEEE J. Quantum Electron. (1990): 1335-1339.

[24]         Y. Chung and N. Dagli: Explicit Finite Difference Vectorial Beam Propagation Method, Electron. Lett. 27, (1991): 2119-2121.

[25]         R. Accornero, M. Artiglia, G. Coppa, P. Di Vita, G. Lapenza, M. Potenza, and P. Ravetto: Finite Difference Methods for the Analysis of Integrated Optical Waveguide, Electron Lett. 26, (1990): 1959-1960.

[26]         H. J. W. M. Hoekstra, G. J. M. Krijnen, and P. V. Lambeck: New Formulations of the Beam Propagation Based on the Slowly Varying Envelope Approximation, Opt. Commun. 97, (1993): 301-303.

[27]         W.P. Huang, C.L. Xu, S.T. Chu, and S. Chaudhuri: The Finite-Difference Vector Beam Propagation Method: Analysis and Assessment, J. Lightwave Technol. 10, (1992): 295-305.

[28]         M. Koshiba: Optical Waveguide Theory by Finite Element Method. KTK Scientific Publishers and Kluwer Academic Publishers, Dordrecht, Holland, (1992).

[29]         J. Jin: The Finite Element Method in Electromagnetics. John Wiley & Sons, Inc. (1993).

[30]         J. L. Volakis, A. Chatterjee, and L. C. Kempel: Finite Element Method for Electromagnetics. IEEE Press (1998).

[31]         G. R. Hadley: Multistep Method for Wide-Angle Beam Propagation, Opt. Lett. 17, (1992): 1743-1745.

[32]         G.R. Hadley: Full-Vector Waveguide Modelling Using an Interative Finite-Difference Method with Transparent Boundary Conditions, J. Lightwave Technol. 13, (1995): 465-469.