- This topic has 3 replies, 2 voices, and was last updated 9 years, 8 months ago by .
- You must be logged in to reply to this topic.
Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiSystem is a comprehensive software design suite that enables users to plan, test, and simulate optical links in the transmission layer of modern optical networks.
OptiInstrument addresses the needs of researchers, scientists, photonic engineers, professors and students who are working with instruments.
OptiSPICE is the first circuit design software for analysis of integrated circuits including interactions of optical and electronic components. It allows for the design and simulation of opto-electronic circuits at the transistor level, from laser drivers to transimpedance amplifiers, optical interconnects and electronic equalizers.
OptiFDTD is a powerful, highly integrated, and user friendly CAD environment that enables the design and simulation of advanced passive and non-linear photonic components.
OptiBPM is a comprehensive CAD environment used for the design of complex optical waveguides. Perform guiding, coupling, switching, splitting, multiplexing, and demultiplexing of optical signals in photonic devices.
The optimal design of a given optical communication system depends directly on the choice of fiber parameters. OptiFiber uses numerical mode solvers and other models specialized to fibers for calculating dispersion, losses, birefringence, and PMD.
Emerging as a de facto standard over the last decade, OptiGrating has delivered powerful and user friendly design software for modeling integrated and fiber optic devices that incorporate optical gratings.
Download our 30-day Free Evaluations, lab assignments, and other freeware here.Â
Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiSystem is a comprehensive software design suite that enables users to plan, test, and simulate optical links in the transmission layer of modern optical networks.
OptiInstrument addresses the needs of researchers, scientists, photonic engineers, professors and students who are working with instruments.
OptiSPICE is the first circuit design software for analysis of integrated circuits including interactions of optical and electronic components. It allows for the design and simulation of opto-electronic circuits at the transistor level, from laser drivers to transimpedance amplifiers, optical interconnects and electronic equalizers.
OptiFDTD is a powerful, highly integrated, and user friendly CAD environment that enables the design and simulation of advanced passive and non-linear photonic components.
OptiBPM is a comprehensive CAD environment used for the design of complex optical waveguides. Perform guiding, coupling, switching, splitting, multiplexing, and demultiplexing of optical signals in photonic devices.
The optimal design of a given optical communication system depends directly on the choice of fiber parameters. OptiFiber uses numerical mode solvers and other models specialized to fibers for calculating dispersion, losses, birefringence, and PMD.
Emerging as a de facto standard over the last decade, OptiGrating has delivered powerful and user friendly design software for modeling integrated and fiber optic devices that incorporate optical gratings.
Download our 30-day Free Evaluations, lab assignments, and other freeware here.Â
Hi Damian, i need your help in finding of Polarization mode dispersion and splice loss measurement using optifiber simulation. if i changed the refractive index of the core from step to graded structure (or) if i induced a dip or trench in refractive index next to core ( depressed cladding) then i faced problem with birefringence parameter window where induced by perturbation parameter is disabled. herewith i have attached a optifiber file for your reference. how can i calculate the PMD for that refractive index profile.
Hi Selvendran,
Sorry for the late reply! Unfortunately our birefringence models can only calculate the delta B and Differential Group Delay per unit length for step index profiles. You can however explicitly state the delat B and DGD in the Birefringence window to calculate the PMD from these values.
The splice loss can be calculated by going to the Scan Fund. Mode window and clicking the Define button beside Splice Loss.
Regards
thanks damian, how can i calculate delt B and DGD from my designed profile … pls give me the mathematical supports for calculate it.
Calculating the difference in polarization propagation constants is how you would do it, however first you need a source of birefringence. In your design what is introducing the asymmetry in the fiber? Mechanical strain? Temperature? Etc. I don’t think this will be a trivial exercise!
Regards