- This topic has 5 replies, 2 voices, and was last updated 8 years, 10 months ago by .
- You must be logged in to reply to this topic.
Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiSystem is a comprehensive software design suite that enables users to plan, test, and simulate optical links in the transmission layer of modern optical networks.
OptiInstrument addresses the needs of researchers, scientists, photonic engineers, professors and students who are working with instruments.
OptiSPICE is the first circuit design software for analysis of integrated circuits including interactions of optical and electronic components. It allows for the design and simulation of opto-electronic circuits at the transistor level, from laser drivers to transimpedance amplifiers, optical interconnects and electronic equalizers.
OptiFDTD is a powerful, highly integrated, and user friendly CAD environment that enables the design and simulation of advanced passive and non-linear photonic components.
OptiBPM is a comprehensive CAD environment used for the design of complex optical waveguides. Perform guiding, coupling, switching, splitting, multiplexing, and demultiplexing of optical signals in photonic devices.
The optimal design of a given optical communication system depends directly on the choice of fiber parameters. OptiFiber uses numerical mode solvers and other models specialized to fibers for calculating dispersion, losses, birefringence, and PMD.
Emerging as a de facto standard over the last decade, OptiGrating has delivered powerful and user friendly design software for modeling integrated and fiber optic devices that incorporate optical gratings.
Download our 30-day Free Evaluations, lab assignments, and other freeware here.Â
Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiSystem is a comprehensive software design suite that enables users to plan, test, and simulate optical links in the transmission layer of modern optical networks.
OptiInstrument addresses the needs of researchers, scientists, photonic engineers, professors and students who are working with instruments.
OptiSPICE is the first circuit design software for analysis of integrated circuits including interactions of optical and electronic components. It allows for the design and simulation of opto-electronic circuits at the transistor level, from laser drivers to transimpedance amplifiers, optical interconnects and electronic equalizers.
OptiFDTD is a powerful, highly integrated, and user friendly CAD environment that enables the design and simulation of advanced passive and non-linear photonic components.
OptiBPM is a comprehensive CAD environment used for the design of complex optical waveguides. Perform guiding, coupling, switching, splitting, multiplexing, and demultiplexing of optical signals in photonic devices.
The optimal design of a given optical communication system depends directly on the choice of fiber parameters. OptiFiber uses numerical mode solvers and other models specialized to fibers for calculating dispersion, losses, birefringence, and PMD.
Emerging as a de facto standard over the last decade, OptiGrating has delivered powerful and user friendly design software for modeling integrated and fiber optic devices that incorporate optical gratings.
Download our 30-day Free Evaluations, lab assignments, and other freeware here.Â
What is optical injection locking (OIL)..?
How to implement using optisystem..?
improving the performance with respect to phase noise and stability by using OIL is advantageous, can work at frequencies more than 100 GHz and have a frequency stability < 1 GHz but it increases the complexity, I am looking for suggestion in this context.
Regards,
Dhiman Kakati
Hi Dhiman,
It is nice to be seeing you again. Injection locking is the process of entering light with a certain frequency into a laser resonator to amplify that frequency in laser output. I haven’t done that in OptiSystem, but I believe fabry Perot laser has an input port where the injection can be done into the laser for such a purpose.
Regards
Thanks Alistu for the reply, but in case of Febry Perot laser it has one electrical port also. so what type of signal need to applied there, I have not used it before, i need a littlebit details.
Regards
The other input can be connected to the electrical bit sequence (which is the bit sequence after passing through a pulse generator). Also, I have noticed the aforementioned input being connected to a DC bias when we only intend to produce a laser light, and not modulate a bit sequence into optical domain.
Thanks Alistu for making me clear,I will try as you have suggested.
Regards,
Dhiman