- This topic has 3 replies, 2 voices, and was last updated 10 years, 6 months ago by .
- You must be logged in to reply to this topic.
Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiSystem is a comprehensive software design suite that enables users to plan, test, and simulate optical links in the transmission layer of modern optical networks.
OptiInstrument addresses the needs of researchers, scientists, photonic engineers, professors and students who are working with instruments.
OptiSPICE is the first circuit design software for analysis of integrated circuits including interactions of optical and electronic components. It allows for the design and simulation of opto-electronic circuits at the transistor level, from laser drivers to transimpedance amplifiers, optical interconnects and electronic equalizers.
OptiFDTD is a powerful, highly integrated, and user friendly CAD environment that enables the design and simulation of advanced passive and non-linear photonic components.
OptiBPM is a comprehensive CAD environment used for the design of complex optical waveguides. Perform guiding, coupling, switching, splitting, multiplexing, and demultiplexing of optical signals in photonic devices.
The optimal design of a given optical communication system depends directly on the choice of fiber parameters. OptiFiber uses numerical mode solvers and other models specialized to fibers for calculating dispersion, losses, birefringence, and PMD.
Emerging as a de facto standard over the last decade, OptiGrating has delivered powerful and user friendly design software for modeling integrated and fiber optic devices that incorporate optical gratings.
Download our 30-day Free Evaluations, lab assignments, and other freeware here.Â
Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiSystem is a comprehensive software design suite that enables users to plan, test, and simulate optical links in the transmission layer of modern optical networks.
OptiInstrument addresses the needs of researchers, scientists, photonic engineers, professors and students who are working with instruments.
OptiSPICE is the first circuit design software for analysis of integrated circuits including interactions of optical and electronic components. It allows for the design and simulation of opto-electronic circuits at the transistor level, from laser drivers to transimpedance amplifiers, optical interconnects and electronic equalizers.
OptiFDTD is a powerful, highly integrated, and user friendly CAD environment that enables the design and simulation of advanced passive and non-linear photonic components.
OptiBPM is a comprehensive CAD environment used for the design of complex optical waveguides. Perform guiding, coupling, switching, splitting, multiplexing, and demultiplexing of optical signals in photonic devices.
The optimal design of a given optical communication system depends directly on the choice of fiber parameters. OptiFiber uses numerical mode solvers and other models specialized to fibers for calculating dispersion, losses, birefringence, and PMD.
Emerging as a de facto standard over the last decade, OptiGrating has delivered powerful and user friendly design software for modeling integrated and fiber optic devices that incorporate optical gratings.
Download our 30-day Free Evaluations, lab assignments, and other freeware here.Â
Does anyone have any idea for simulating a NHA with 1nm dielectric on top?
Hi,
By NHA, do you mean nano-hole array? If so, the attached file may be interesting for you. It is one of our example files on a gold nano-hole array, simulated using periodic boundary conditions. It should not be difficult to adapt it to your needs by changing some dimensions and adding a thin dielectric layer to the top. Keep in mind 1 nm is pretty small, so you’ll want to use a smaller mesh and/or a non-uniform mesh. In which case, Lesson 22, will help you learn how to setup the non-uniform mesh.
Hi,
Yes, I meant the nano hole arr
Thanks for your comment. Would you please send me the sample file that is compatible with 32 bit (version 12.0.0.611)?
I could not open it.
Thanks,
Mehrdad
OptiFDTD versions above and including 12.0 are strictly 64 bit. Are you sure you have 32 bit software?
Unfortunately, I don’t have access to the 32 bit example file, but you may be able to find it in your example folder, which can be found at “Documents\OptiFDTD 12 Samples\3D_samples\plasmonics”. Another option is to download a 7 day evaluation copy of OptiFDTD, which will give you access to the most up-to-date version.