- This topic has 1 reply, 2 voices, and was last updated 10 years ago by .
- You must be logged in to reply to this topic.
Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiOmega is a collection of products specialized for photonic integrated circuit simulation. It automates the design flow for
generating compact models from device level simulations. The software package includes two solvers that can be used via
Python scripting: Vector Finite Difference (VFD) Mode Solver and Finite Difference Time Domain (FDTD) Electromagnetic Solvers.
Download our 30-day Free Evaluations, lab assignments, and other freeware here.Â
Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiOmega is a collection of products specialized for photonic integrated circuit simulation. It automates the design flow for
generating compact models from device level simulations. The software package includes two solvers that can be used via
Python scripting: Vector Finite Difference (VFD) Mode Solver and Finite Difference Time Domain (FDTD) Electromagnetic Solvers.
Download our 30-day Free Evaluations, lab assignments, and other freeware here.Â
dear all,
i need further explanation about global iterations. the explanation given in manual is not very clear. kindly answer my following question:-
-why in DPWDMA results have 2 frequency
-signal index come from which source?
-why for each sweep iteration got multiple index signal
thanks
Hi Nadzreen,
If you are referring to the material in the link below, the signal index correspond to the results achieved in a specific iteration. For example, signal index 2 results correspond to results after iteration 2 is finished.
Lesson 7: Optical Amplifiers — Designing Optical Fiber Amplifiers and Fiber Lasers
Regards