- This topic has 2 replies, 2 voices, and was last updated 7 years, 10 months ago by .
- You must be logged in to reply to this topic.
Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiOmega is a collection of products specialized for photonic integrated circuit simulation. It automates the design flow for
generating compact models from device level simulations. The software package includes two solvers that can be used via
Python scripting: Vector Finite Difference (VFD) Mode Solver and Finite Difference Time Domain (FDTD) Electromagnetic Solvers.
Download our 30-day Free Evaluations, lab assignments, and other freeware here.Â
Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiOmega is a collection of products specialized for photonic integrated circuit simulation. It automates the design flow for
generating compact models from device level simulations. The software package includes two solvers that can be used via
Python scripting: Vector Finite Difference (VFD) Mode Solver and Finite Difference Time Domain (FDTD) Electromagnetic Solvers.
Download our 30-day Free Evaluations, lab assignments, and other freeware here.Â
Hi!
I am interested in making elliptical holes in a slab and simulate transmission through the slab. The 3D cylinder drawing tool gives circular holes, and I am unable to rotate the elliptic waveguide drawing so that it faces the z-direction…. Any suggestions?
Hello Christopher,
By “faces the z-direction” I am going to work under the assumption that you mean the elliptical cross section is in the XY plane and the waveguide runs along the z axis.
The best way to set this up is to add a fiber profile through Profile Designer with your desired major and minor axis. then create a linear waveguide along z and assign the fiber profile to this waveguide. I have attached a picture of a design that has the elliptical waveguide you are referring to and the waveguide I am describing on the left.
Is this what you are looking for?
Scott
Thanks a lot for the help. That did the trick!