- This topic has 1 reply, 2 voices, and was last updated 11 years, 8 months ago by .
- You must be logged in to reply to this topic.
Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiOmega is a collection of products specialized for photonic integrated circuit simulation. It automates the design flow for
generating compact models from device level simulations. The software package includes two solvers that can be used via
Python scripting: Vector Finite Difference (VFD) Mode Solver and Finite Difference Time Domain (FDTD) Electromagnetic Solvers.
Download our 30-day Free Evaluations, lab assignments, and other freeware here.Â
Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiOmega is a collection of products specialized for photonic integrated circuit simulation. It automates the design flow for
generating compact models from device level simulations. The software package includes two solvers that can be used via
Python scripting: Vector Finite Difference (VFD) Mode Solver and Finite Difference Time Domain (FDTD) Electromagnetic Solvers.
Download our 30-day Free Evaluations, lab assignments, and other freeware here.Â
I just downloaded the 32 bit version of FTDT to learn how the program works, so not an experienced FDTD user. I am using FDTD to analyze a small lens immersed in another material. I am using the substrate with appropriate refractive index to model the immersive material. IS the wavelength I specify in the simulation the wavelength in air, or the wavelength in the substrate material?
Hi,
The wavelength defined in the input plane / point source parameters is always the free space wavelength (ie. in air).