- This topic has 2 replies, 1 voice, and was last updated 10 years, 2 months ago by .
- You must be logged in to reply to this topic.
Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiOmega is a collection of products specialized for photonic integrated circuit simulation. It automates the design flow for
generating compact models from device level simulations. The software package includes two solvers that can be used via
Python scripting: Vector Finite Difference (VFD) Mode Solver and Finite Difference Time Domain (FDTD) Electromagnetic Solvers.
Download our 30-day Free Evaluations, lab assignments, and other freeware here.Â
Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiOmega is a collection of products specialized for photonic integrated circuit simulation. It automates the design flow for
generating compact models from device level simulations. The software package includes two solvers that can be used via
Python scripting: Vector Finite Difference (VFD) Mode Solver and Finite Difference Time Domain (FDTD) Electromagnetic Solvers.
Download our 30-day Free Evaluations, lab assignments, and other freeware here.Â
dear all,
please illustrate the use of FBG as dispersion compensation with the formulla used to calculate the FBG parameters like length for the dipersion Dg[ps/nm.km]
e.g; suppose i need to set Chirped fiber bragg grating (CFBG) for dispersion compensation of 100km SMF having Dg=17ps/nm.km.
then what are parmeters like length etc; to be set for CFBG on optisystem.
please attach the necessary file
from optisystem the basic parameters can be visualised in attached figure
here