- This topic has 2 replies, 2 voices, and was last updated 8 years, 6 months ago by .
- You must be logged in to reply to this topic.
Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiSystem is a comprehensive software design suite that enables users to plan, test, and simulate optical links in the transmission layer of modern optical networks.
OptiInstrument addresses the needs of researchers, scientists, photonic engineers, professors and students who are working with instruments.
OptiSPICE is the first circuit design software for analysis of integrated circuits including interactions of optical and electronic components. It allows for the design and simulation of opto-electronic circuits at the transistor level, from laser drivers to transimpedance amplifiers, optical interconnects and electronic equalizers.
OptiFDTD is a powerful, highly integrated, and user friendly CAD environment that enables the design and simulation of advanced passive and non-linear photonic components.
OptiBPM is a comprehensive CAD environment used for the design of complex optical waveguides. Perform guiding, coupling, switching, splitting, multiplexing, and demultiplexing of optical signals in photonic devices.
The optimal design of a given optical communication system depends directly on the choice of fiber parameters. OptiFiber uses numerical mode solvers and other models specialized to fibers for calculating dispersion, losses, birefringence, and PMD.
Emerging as a de facto standard over the last decade, OptiGrating has delivered powerful and user friendly design software for modeling integrated and fiber optic devices that incorporate optical gratings.
Download our 30-day Free Evaluations, lab assignments, and other freeware here.
Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiSystem is a comprehensive software design suite that enables users to plan, test, and simulate optical links in the transmission layer of modern optical networks.
OptiInstrument addresses the needs of researchers, scientists, photonic engineers, professors and students who are working with instruments.
OptiSPICE is the first circuit design software for analysis of integrated circuits including interactions of optical and electronic components. It allows for the design and simulation of opto-electronic circuits at the transistor level, from laser drivers to transimpedance amplifiers, optical interconnects and electronic equalizers.
OptiFDTD is a powerful, highly integrated, and user friendly CAD environment that enables the design and simulation of advanced passive and non-linear photonic components.
OptiBPM is a comprehensive CAD environment used for the design of complex optical waveguides. Perform guiding, coupling, switching, splitting, multiplexing, and demultiplexing of optical signals in photonic devices.
The optimal design of a given optical communication system depends directly on the choice of fiber parameters. OptiFiber uses numerical mode solvers and other models specialized to fibers for calculating dispersion, losses, birefringence, and PMD.
Emerging as a de facto standard over the last decade, OptiGrating has delivered powerful and user friendly design software for modeling integrated and fiber optic devices that incorporate optical gratings.
Download our 30-day Free Evaluations, lab assignments, and other freeware here.
Question:
I am trying to use bidirectional fibers to design a nonlinear optical loop mirror, but I have run into some problems. The outputs of the bidirectional fiber are always zero no matter what I change the inputs to. How can I fix this?
Answer:
The most likely error in your design is the incorrect use of delays and initial delay. Every component in OptiSystem requires all of its inputs to have a signal. If the simulation is run and a component is missing an input signal, it will output an empty signal with no values. To perform the simulation correctly either the Optical Delay component or Initial delay option must be used.
Take a look at the example attached, “Nonlinear Optical Loop Mirror.osd”, in this example Optical Delays are used. The delays function by first outputting an Optical Null signal and then on subsequent iterations acting as a transparent interconnect. The number of iterations can be changed in the Signals tab of the global parameters box. A higher number of iterations will allow the simulation to converge to the correct results.
If you would like a further explanation of both the Optical Delay component and Initial delay option, please follow the link below to a tutorial.
Sir,
Can u please resend the attached “Nonlinear-optical loop mirror.osd” file again because i am not able to open it.When i am tring to open it it is showing ‘Failed to download from storage’.
Regards