Home Forums FIBER Sensors Reply To: Sensors

#12895
Profile Photo
Luis Acevedo
Participant

I do not know if you can simulate this with OptiFiber

I know that Dr, Suzanne Costello was working in Hermeticity for MEMS, She was using mass spectrometer to sense the gas or leakage of the chip.

Hermeticity is a measure of how well a package can maintain its intended ambient cavity environment over the device lifetime. Since many Micro-Electro-Mechanical Systems (MEMS) sensors, actuators and microelectronic devices require a known cavity environment for optimum operational performance, it is important to know the leak rate of the package for lifetime prediction purposes. In this field, limitations in the traditional leak detection methods and standards used originally for integrated circuits and semiconductors have been blindly and often incorrectly applied to MEMS and microelectronic packages. The aim of this project is to define accurately the limitations of the existing hermeticity test methods and standards when applied to low cavity volume MEMS and microelectronic packages and to demonstrate novel test methods, which are applicable to such packages. For the first time, the use of the Lambert-W function has been demonstrated to provide a closed form expression of the maximum true leak rate achievable for the most commonly used existing hermeticity test method, the helium fine leak test. This expression along with the minimum detectable leak rate expression is shown to provide practical guidelines for the accurate testing of hermeticity for ultra-low volume packages. The three leak types which MEMS and microelectronic packages are subject to: molecular leaks, permeation and outgassing, are explained in detail and it is found that the helium leak test is capable of quantifying only molecular leak in packages with cavity volumes exceeding 2.6 mm3. With many MEMS and microelectronic package containing cavities with lower volumes, new hermeticity test methods are required to fill this gap and to measure the increasingly lower leak rates which adversely affect such packages. Fourier Transform Infra-Red (FTIR) spectroscopy and Raman spectroscopy are investigated as methods of detecting gas pressure within MEMS and microelectronics packages. Measured over time, FTIR can be used to determine the molecular and permeation leak rates of packages containing infra-red transparent cap materials. Future work is required to achieve an adequate signal to noise ratio to enable Raman spectroscopy to be a quantitative method to determine molecular leaks, permeation leaks and potentially outgassing. The design, fabrication and calibration procedure for three in-situ test structures intended to monitor the hermeticity of packages electrically are also presented. The calibration results of a piezoresistive cap deflection test structure show the structure can be used to detect leak ii rates of any type down to 6.94×10-12 atm.cm3.s-1. A portfolio of hermeticity test methods is also presented outlining the limitations and advantages of each method. This portfolio is intended to be a living document and should be updated as new research is undertaken and new test methods developed.

http://www.ros.hw.ac.uk/handle/10399/2611

Categories