- This topic has 3 replies, 3 voices, and was last updated 10 years, 7 months ago by .
- You must be logged in to reply to this topic.
Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiOmega is a collection of products specialized for photonic integrated circuit simulation. It automates the design flow for
generating compact models from device level simulations. The software package includes two solvers that can be used via
Python scripting: Vector Finite Difference (VFD) Mode Solver and Finite Difference Time Domain (FDTD) Electromagnetic Solvers.
Download our 30-day Free Evaluations, lab assignments, and other freeware here.Â
Optiwave software can be used in different industries and applications, including Fiber Optic Communication, Sensing, Pharma/Bio, Military & Satcom, Test & Measurement, Fundamental Research, Solar Panels, Components / Devices, etc..
OptiOmega is a collection of products specialized for photonic integrated circuit simulation. It automates the design flow for
generating compact models from device level simulations. The software package includes two solvers that can be used via
Python scripting: Vector Finite Difference (VFD) Mode Solver and Finite Difference Time Domain (FDTD) Electromagnetic Solvers.
Download our 30-day Free Evaluations, lab assignments, and other freeware here.Â
Can be direct calculate the NMSE. Which device will used for it or
I s any indirect calculation like we can use the matlab component for it
You would need to use the Matlab component in this case, because you will need to have a data file with your measured data to compare to the simulated values.
Hi Ajay,
I agree with Damian according to your question. You can plot the function and obtain the distribution using just standard deviation (with a zero mean for noise). If I am not mistaken, this deviation will be equal to average power in the noise that you have.
Thanks to both of you.