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1 FDTD Basics
OptiFDTD is a powerful, highly integrated, user-friendly software that allows computer aided design 
and simulation of advanced passive photonic components.

The OptiFDTD software package is based on the finite-difference time-domain (FDTD) method, 
which has been established as a powerful engineering tool for integrated and diffractive optics 
device simulations. This is due to its ability to simultaneously model light propagation, scattering, 
diffraction, reflection, and polarization effects. It can also model material anisotropy and dispersion 
without any assumptions of field behavior such as the slowly varying envelope approximation. The 
method allows for the effective and powerful simulation and analysis of sub-micron devices with 
very fine structural details. A sub-micron scale implies a high degree of light confinement and 
correspondingly, the large refractive index difference of the materials (mostly semiconductors) to 
be used in a typical device design.

1.1 2D FDTD Equations
The FDTD approach is based on a direct numerical solution of the time-dependent Maxwell's curl 
equations. The lossless and source free expressions are

When using OptiFDTD in 2D, the photonic device is laid out in the XZ  plane, the propagation is 
along the Z axis while the structure is taken to be infinite along the Y.  The structure being infinite 
along Y removes any term containing a spatial derivative in Y from Maxwell's equations.  This allows 
the six equations become partially uncoupled and can be placed in two groups: ( , , and 
) and ( , , and ).  These two groups are designated TE  and TM; however, there are 
different conventions regarding which group gets which designation.  OptiFDTD follows 
conventional standards based on waveguiding which looks at the solutions to the field components 
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that will result in a wave equation,  and .  The Transverse Electric (TE) designation goes to 
the group that has a electric wave equation along the axis perpedicular to the direction of 
propagation: ( , , and ).  The Transverse Magnetic (TM) designation goes to the group 
that has the magnetic wave equation along y: ( , , and ).  This is different than 
conventions such as that used by Taflove so readers must keep this in mind when comparing 
multiple references.

1.1.1 TE waves
 As discussed the 2D TE case solve the expressions for ,  , and   while setting the other 
components to zero:

 where

The refractive index of the material is defined by:

Each field is represented by a 2D array: ,  , and . The indices,   and 
account for the number of space steps in the X and Z direction, respectively. In the case of TE, the 
location of the fields in the mesh is shown below.
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•
•
•

1 Location of the TE fields components in the computational domain

The separation of the TE fields is based upon the 2D Yee Cell. The  field is considered to be the 
center of the FDTD spatial cell which is defined by the dashed lines. The magnetic fields,   and  

, are associated with cell edges.The reason for the offset fields is that the derivatives within 
Maxwell's equations will be discretized and expressed using central finite differences ensuring 
second-order accuracy in both space and time. .

The  field is associated with integer values of the indices  i  and k .
The   field is associated with integer i  and (k + 0.5)  indices.
The   field is associated with  (i + 0.5)  and integer k  indices.

 The discretization of Maxwell's equations along the grid are
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where

There are two considerations when selecting the space and time step sizes.  To ensure that the 
source is properly represented the spatial step size is typically set to 10 to 20 steps per wavelength.  
This is a basic starting point as complex materials or designs with feature sizes smaller than the 
source wavelength will required higher resolutions.  Scanning the mesh size and performing 
convergence testing should always be considered. The sampling in time is chosen to ensure 
numerical stability of the algorithm and is specified by the . The time step is determined by the 
Courant or Courant-Friedrichs-Levy (CFL) condition:

1.1.2 TM waves
In the 2D TM case it is the , , and  field components that are solved for. Maxwell's 
equations take the following form:

The location of the TM fields in the computational domain within the 2D Yee cell can be seen below. 
In the TM case the  fields are defined at the center of the cell while the  and  fields are 
defined along the cell edges.
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2 Location of the TM fields components in the computational domain

1.2 3D FDTD Equations
In 3D simulations each field components is represented by a 3D array: Ex(i,j,k) ,  Ey(i,j,k) ,  Ez(
i,j,k) , Hx(i,j,k), Hy(i,j,k), Hz(i,j,k) . These fields are defined in space according to the 
complete Yee Cell  where  and  fields are spaced 1/2 step in both space and time and 
interleaved such that central difference expressions for components have the required information. 
In this algorithm the  and  fields are solved in a leapfrog fashion where  fields are calculated 
using  from the previous half time step and then vice versa.
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3 A 3D Yee cell showing the E and H field components

  The source free time domain vectorial Maxwell’s equations are given in differential form by:

The ability to use these expressions on a grid with discretized space and time requires the use of 
central finite difference expressions which provides second-order accuracty. The 3D-FDTD formulas 
can be written, using Allen Taflove's notation, as:

 components
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 components

1.3 Discretization of space and time
There are 2 fundamental constraints to the FDTD method when it comes to the discretization of the 
simulation space. These are the size of the spatial steps and its impact on accuracy and the step size 
for the time steps and its impact on the stability of the simulation.  This section will discuss the 
constraints and general rules for setting the discretization parameters of a simulation.
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1.

2.

1.3.1 Spatial step size
The spatial step size affects the simulation results in two ways:

The resolution is not sufficiently fine enough to properly characterize either the source or the structure under 
test.
If the step size is too large numerical dispersion can be introduced that results from the discretization of the 
derivatives.

A well known general rule for spatial discretizations in FDTD simulations is that the spatial step size 
should correspond to 1/10th of a wavelength, or "10 points per wavelength".  Understandable this 
is referring to the wavelength of the source in the highest refractive index material in the 
simulation.  This is the criteria used in the Auto setting in OptiFDTD. 

where  is the maximum refractive index value in the computational domain.

It should be noted that this is merely a good starting point.  For example if the design includes 
features that are less than or on the same order as the wavelength then this rule may not provide 
sufficient resolution to properly characterize these features, one suggestion would be to set the 
resolution to be 1/10 of the smallest feature size. It is for this reason, and to verify that numerical 
dispersion is at a minimum that convergence testing is always highly recommended.  Convergence 
testing is done by repeatedly running simulations with increasingly smaller spatial step sizes and 
comparing the results to ensure that they sufficiently converged relative to the discretization.

1.3.2 Time step size
 The second major constraint on the discretization of an FDTD simulation is the size of the time step 

.  In order to ensure stability in the numerical solution it is necessary that the time step size 
satisfies the Courant-Friedrichs-Levy (CFL) condition.  This is the condition that is used in the 
Auto setting for an OptiFDTD simulation.

 For a 3D FDTD simulation, the CFL condition is [1, §4.7]   :

  

 where  is the speed of the light in the medium.
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1.

1.3.3 References
Allen Taflove and Susan Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 
third edition, Norwood MA: Arthech House, 2005.

1.4 OptiFDTD Simulation Procedures
The following is the workflow chart for project design, simulation and analysis in OptiFDTD.

4 FDTD Simulation Flow Chart in OptiFDTD

1.5 Output data
The FDTD algorithm, as described in the 2D and 3D sections calculates the fields and their 
propagation within the time domain.  At each location of the computational domain for a given 
time  they have are of the form
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where    is the amplitude of the field at the given location,   is the wave profile or the envelope, 
and   is the corresponding phase. It should be noted that the phase information cannot be 
directly taken from a time domain simulation.  If the source has multiple frequencies it is also not 
possible to determine what portion of the  is due to any given frequency component.

In order to get the full amplitude/phase wave information as a function of the frequencies present 
in the simulation, it is necessary to obtain the stationary complex fields that correspond to the 
waveform of the above equation. These complex fields are calculated by performing a Discrete 
Fourier transform on the time domain results of an FDTD simulation. The final complex fields can be 
solved at specific output Planes and visualized.

The information being sought plays a vital role in the placement of the output planes.

5 Output Planes

OptiFDTD uses the TF/SF  (total field/scattering field) technique for the incident plane. The region 
behind the incident plane, only contains field contributions that are scattered from the simulation 
space, these can also be called the reflections allowing the reflection coefficient or reflectance to be 
calculated. The region in the propagation or transmission region for the plane contain the total field 
region and information recorded here contains the transmission characteristics of the space being 
modelled.  When the Observation detectors are placed in the field transmission region, the 
transmission coefficient or transmittance can be calculated.
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1.

2.

3.

1.6 References
Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic 
media," IEEE Transactions on Antennas and Propagation, 302-307, (1966).
Chu, S. T., Chaudhuri, S.K., "A finite-difference time-domain method for the design and analysis of guided-wave 
optical structures," Journal of Lightwave Technology, 2033-2038, (1989).
Taflove, A., Hagness, S., "Computational Electrodynamics: The Finite-Difference Time-Domain Method," Second 
edition, Arthech House, Boston, (2000).
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2 Material Models
 One of the main advantages of the FDTD approach is the lack of approximations for the 
propagating field—light is modeled in its full richness and complexity. The other significant 
advantage is the great variety of materials that can be consistently modeled within the FDTD 
context. In this sub-section we make a brief review of some of the main material properties that can 
be handled.

2.1 Constant Dielectrics (Including Loss)

2.1.1 Complex refractive index
 Constant dielectric materials are expressed by a complex refractive index value ( ) or relative 
permittivity value ( ).

 where,   is the refractive index indicating the phase velocity information in the medium,  is the 
extinction coefficient that indicates the amount of absorption loss when the electromagnetic wave 
propagates through the material.

The expressions for the refractive index and permittivity are linked through the following 
relationship

The propagation constant is given by

•

•
•

In OptiFDTD, the engineering convention ( ) is used which drives the use of the negative 
imaginary component for  (the physics convention will use a positive).  With both conventions a 
negative imaginary part, positive , will express a loss.
This convention carries over to the definition of the permittivity.
For the constant dielectric model the user specifies the real and imaginary parts so the user is defining 

 and .


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where  is the attenuation constant,  is the phase constant, and  is the wavelength in 
vacuum.

2.1.2 Loss through conductivity
The material losses can also be expressed as a function of the material conductivity.  In the 
derivation It should be emphasized that in the time domain all the  and  fields are real 
quantities.  Therefore, accounting for loss requires a non-zero conductivity of the medium:

 where

 Relating the  real and imaginary part of the permittivity in both approaches yields the requirement 
that

Provided that the above relation is held both the refractive index and conductivity methods of 
incorporating loss are equivalent. 

Therefore if a user wishes to define a constant dielectric where they know the conductivity it can be 
defined by setting the imaginary part of the refractive index to

With a constant dielectric (i.e. frequency-independent permittivity) and  or 
equivalently , the solution to Maxwell's equations grows exponentially with time. 
Simulations with these materials are therefore unstable. If one wants to model a material 
with , dispersive materials (e.g. Lorentz-Drude) should be used instead.


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2.1.3 Sellmeier
 If the user would prefer to define the constant dielectric through the Sellmeier equation for a 
specific reference wavelength ( ).  This can be done by selecting the Sellmeier check box, entering 
the reference wavelength and in the Sellmeier tab specifying the coefficients for the desired 
material.  The Sellmeier relation to permittivity as used in OptiFDTD is

Where   is the Strength,   is the damping factor or collision wavelength, and   is the 
oscillating wavelength.

2.2 2D Dispersive Materials

2.2.1 Lorentz dispersive materials
Lorentz dispersion materials are materials for which the frequency dependence of the dielectric 
permitivity can be described as the sum of multiple resonant Lorentzian functions:

where 

It is important that users note the constant nature of the dielectric defined by the Sellmeier 
expression in OptiFDTD.  The refractive index of the material will be constant throughout a 
simulation regardless of the wavelength of the source (either CW or pulsed).  While the 
refractive index is dependent on wavelength in OptiFDTD it is the reference wavelength 
within the definition of the material that is used not the source.  If the user requires a 
material that includes dispersive effects they should use the Lorentz-Drude dispersive 
material functionality


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 In the lossless case, the above equation is directly related to the Sellmeier equation, which in the 
case of three resonances can be presented as:

In the lossy case, the Sellmeier equation can be written in a generalized form, accounting for a non-
zero damping coefficient   as well as for anisotropy in the dispersion properties:

There are different ways to implement the Lorentz model into the FDTD formalism. OptiFDTD 
considers the polarization equation approach in the single resonance case where an auxiliary 
differential equation can be derived that will work in conjunction with the Maxwell's equations. It 
uses the dielectric susceptibility function:

and the relation between the polarization and the electric field:

If the susceptibility function and the relationship between the polarization and electric field are 
combined and the inverse Fourier transform of the result is taken (frequency to time domain) then 
the following differential equation is obtained,

If a change of coordinates is used relating the polarization to the current density,

then, the differential equation becomes:
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This can be combined into the  term in the differential form of the 3D maxwell's equations, 
taking the form:

This can be solved using the FDTD method as described in 3D FDTD Equations .

2.2.2 Drude materials
Drude dispersive materials in OptiFDTD are characterized by the following dielectric function:

 Where   is the permittivity for infinity frequency,   is the plasma frequency, and   is the 
collision frequency or damping factor.  This can be incorporated into the FDTD field equations in a 
similar fashion to the Lorentz model.

2.3 3D Dispersive Materials (Lorentz-Drude)

2.3.1  Lorentz-Drude Model in Frequency Domain
The Lorent-Drude model [1] is a general model that defines a complex dielectric function capable of 
modelling conductivity, and dispersion that is of the following form:

This form separates explicitly the intraband effects (  - usually referred to as free electron 
effects) from interband effect (  - usually referred to as bound-electron effects).

The Lorentz model is only supported in 2D simulations. Lorentz-Drude materials, that are a 
generalization of the Lorentz model, are supported for both 2D and 3D simulations.



The Drude model is only supported in 2D simulations. Lorentz-Drude materials, that are a 
generalization of the Drude model, are supported for both 2D and 3D simulations.


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The intraband contribution of the dielectric function is described by the well known free-electron or 
Drude model  [2,3]:

The plasma frequency associated with intraband transistions can be written as:

where G0 is the oscillator strength.

The interband part of the dielectric function is described by the following simple semi-quantum 
model resembling the Lorentz results for dielectrics:

Where:

 The separate effects can be brought together as the Lorentz-Drude Model in a general equation

where:

If only the Drude model is required the user can set   (only  term) and .

If only the Lorentz model is required then set  and . 
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Reference [1] gives the Lorentz-Drude parameters for 11 noble metals and the "OptiFDTD Material 
Library" manual contains parameters compiled by Optiwave that describe noble metals and other 
dispersive materials.

2.3.2  Lorentz-Drude Model in Time Domain
The direct use of the Lorentz-Drude model within an FDTD simulation presents complications as it 
is a frequency domain model while FDTD is a time domain method. It is necessary to incorporate 
the inverse transform of  Lorentz-Drude model with the Polarization term in Maxwell's equations in 
order for OptiFDTD to capture the dispersive characteristics. Including the Polarization term, 
Maxwell's equations are

where we have used the relationship   and set  .  If we treat each resonance 
in the Lorentz-Drude model as a contribution to the Polarization ( ) we can 
express the equations that need to be discretized in the Yee cell as

It is now necessary to work with the Lorentz-Drude model and express it is such a way that we can 
create an auxilliary differential equation that will allow the calculation of each  by using the 
relationship between the polarization and electric field.

 Taking the Fourier transform of the last equation leads to the following differential equation:

This differential equation can be solved for each of the resonances with each time step for each 
position as the system updates the electric and magnetic fields within the FDTD update algorithm.

2.3.3  Lorentz-Drude model user interface in OptiFDTD
 The Lorentz-Drude model user interface is shown below.
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•

•
•
•
•

6 Dispersive Material Form

In this dialog, the user has 2 options for setting a Lorentz-Drude model, either they can enter the 
required coefficients for each resonant term as defined in the previous equations or the user can 
use the fit functionality to have the software calculate the required coefficients from a refractive 
index file.  The following notation is used for the coefficients:

resonance: number of resonance terms (This will be # Lorentz terms + 1 Drude term, in this example 5 Lorentz 
terms and 1 Drude)
Strength: Strength of the corresponding resonance term
Plasma (rad/s): Plasma frequency
Resonant (rad/s): Resonant frequency
Damping (rad/s): Collision frequency (or damping factor)

2.3.3.1 Lorentz-Drude fitting functionality

Within the main Lorentz-Drude dialog the user can have the software perform the Lorentz-Drude fit 
to a complex refractive index spectrum (  is absorption) and give4n the number of 
resonances, provide the coefficients.  This functionality is accessed through the Fit Curve... button 
which launches the Lorentz-Drude Curve Fitter.
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•

•
•

•

•

•
•
•

•

7 Lorentz-Drude Curve Fitter

The dialog controls are:
Resonances - the number of resonances to use in the fit this will include the number of  Lorentz terms and one 
Drude term, in this example 1 Lorentz terms and 1 Drude.
Calculate - activates the fitting functionality, will only be enabled once an input file has been provided.
Input File - the input file needs to be 3 columns: lambda, , and .  The file can be accessed through the ... 
button on the right of the field.
Auto-Export to XML - If the check box is selected the material fit can will automatically be saved to the location 
specified in the file which is selected using the ... button.  The default location will be the users material library. 
The save is triggered by the Calculate or Ok buttons

 - check boxes that enable or disable the visualization of the graphs of the data from the file 
and the fit results (indicated by ~).
Lambda Unit - allows the user to indicate the units used in the input file.
Marker Size - allows the user to control the size of the markers used in the graph.
Ok - save the material to file (if Auto-Export is enabled) and transfer the fit coefficients to the main Lorentz-Drude 
form.
Cancel - exit form without transferring results to main form.
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1.

2.

3.

4.

5.

8 Lorentz-Drude Curve Fitter - Example Graphene Fit

2.3.4 References
 Aleksandar D. Rakic, Aleksandra B. Djurisic, et. al., "Optical Properties of Metallic Films for Vertical - Cavity 
Optoelectronic Devices". 1998 Optical Society of America, August, Vol. 37, No. 22, Applied Optics, pp. 5271-5283.
 M. I. Markovic and A. D. Rakic, " Determination of reflection coefficients of laser light of wavelength (0.22 um, 
200um) from the surface of aluminum using the Lorentz-Drude model", Appl. Opt. 29, 3479-3483 (1990).
 M. I. Markovic and A. D. Rakic, " Determination of optical properties of aluminum including electron reradiation 
in the Lorentz-Drude Model", Opt. Laser technol. 22, 394-398, (1990).
Ziolkowski, R. W., "Incorporation of microscopic material models into FDTD approach for ultrafast optical 
propagation," IEEE Transactions on Antennas and Propagation, 375-391, (1997).
 Liang, T., Ziolkowski, R. W., "Dispersion effects on grating-assisted output couplers under ultra-fast pulse 
excitations", Microwave and Opt. Tech. Lett., 17, 17-23, (1998).

2.4 Nonlinear Materials Models

Nonlinear optical behavior can be typically attributed to the dependence of the polarization 
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•
•
•
•

 on the applied electric field,  . Assuming an isotropic dispersive material, Maxwell's 
equations are:

where  is expressed as linear ( ) and nonlinear ( ) contributions

2.4.1 Linear Polarization
The linear polarization term,  , can be written as a Lorentz oscillator differential equation:

where    is generally referred to as:

where   is the linear relative permittivity.

2.4.2 Nonlinear Polarization
The nonlinear polarization may come from various models. Currently OptiFDTD can handle 
four kinds of nonlinearity:

 Dispersive second-order nonlinear materials
 Dispersive third-order nonlinear materials
 Dispersive Kerr effect
 Dispersive Raman effect

For all four possible nonlinear models, the 2D Lorentz model can be included by selecting the 
labelled check mark and entering the required coefficients in the Lorentz tab within the dialog.

2.4.2.1  Dispersive 2nd order nonlinear materials

 In this model, the nonlinear polarization is expressed as
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where   is the second order isotropic susceptibility. In order to simulate second order nonlinear 
effects, two parameters are required: the linear relative permittivity,  , and the second order 
isotropic susceptibility,  .

2.4.2.2  Dispersive 3rd order (Kerr) nonlinear materials

 Like the second-order nonlinearity, OptiFDTD can model third-order nonlinearity with the 
nonlinear polarization

 where   is the third order isotropic susceptibility. Again the only two parameters required are 
the linear relative permittivity,  , and the second order isotropic susceptibility,  .

2.4.2.3 Dispersive 3rd order (Kerr - Response Time) materials

 If the time scale over which the medium changed is greater than the pulse width, we should take 
into account the effects of the finite response time of the medium. The theory for this model is well 
documented inn the work of Prof. Richard W. Ziolkowski 's work [1-4], OptiFDTD treats the 
nonlinear effect with a finite response time as well as an instantaneous manner by solving the 
phenomenological susceptibility equation simultaneously with Maxwell's equation:

 where

are the three parameters that are required when configuring a 3rd order material with the response 
time included.

2.4.2.4  Dispersive Raman effect

The Raman model allows another way to simulate the nonlinear phenomenon where the nonlinear 
susceptibility is modeled by a second-order derivative equation which is related to the resonant 
wavelength and the response time
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1.

2.

3.

4.

5.

6.

7.

   where

 are the four parameters required when configuring a Raman material.

2.4.2.5 Nonlinear effects simulation

To observe nonlinear effects in commonly used materials, a high-intensity light source is required. 
When creating a design, the user should pay special attention to the input wave amplitude and/or 
the power level.  Each nonlinear effect has a different threshold which is controlled by the 
parameters and as such varying the input may be required in order to observe the desired nonlinear 
phenomenon.

2.4.2.6 References
Ziolkowski, Richard W., Judkins, Justin B., "Full-wave vector Maxwell equation modeling of the self-focusing of 
ultrashort optical pulses in a nonlinear Kerr medium exhibiting a finite response time", J. Opt. Soc. Am. B, 2, 
186-198 (1993).
 Ziolkowski, Richard W., Judkins, Justin B., "Nonlinear finite-difference time-domain modeling of linear and 
nonlinear corrugate waveguides", J. Opt. Soc. Am. B, 9, 1565-1575, (1994).
 Ziolkowski, Richard W., Judkins, Justin B., "Applications of the nonlinear fainted difference time-domain(NL-
FDTD) method to pulse propagation in nonlinear media: self-focusing and linear-nonlinear interfaces", Radio 
Science, 901-911, (1993).
 Ziolkowski, Richard W., "The incorporation of microscopic material models into the FDTD approach for ultrafast 
optical pulse simulations", IEEE Trans. On Antenna and Propagation, 3, 375-391, (1997).
 Joseph, Rose M., Taflove, Allen, "FDTD Maxwell's equations models for nonlinear electrodynamics and optic", 
IEEE Trans. On Antenna and Propagation, 3, 364-374, (1997).
 Goorjian, Peter M., Taflove, Allen, Joseph, Rose M., "Computational modeling of Femtosecond optical soliton 
from Maxwell's equation", IEEE Journal of Quantum electronics, 10, 2416-2422, (1992).
 Joseph, Rose M., Taflove, Allen, " Spatial soliton deflection mechanism indicated by FD-TD Maxwell's equations 
modeling", IEEE Photonics Technology Letters, 10, 1251-1254, (1994).
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•
•
•
•

3 OptiFDTD Boundary Conditions
While modelling the propagation of light an FDTD simulation must address how to calculate the 
field at boundaries as information required by the updating equation would not be present.  The 
basic FDTD algorithm must be modified at the boundaries of the computational window.  The 
boundary conditions that can be used can vary from absorbing boundary conditions (ABC) or 
perfect conductor to periodic conditions.  There are 4 boundary conditions available within 
OptiFDTD:

Perfectly Matched Layers (PML)
Perfect Electric Conductor (PEC)
Perfect Magnetic Conductor (PMC) 
Periodic Boundary Condition (PBC)

This section will explore the details of each of the boundary conditions.

3.1 PML Boundary Conditions
A PML or perfectly matched layer boundary condition is one in which the refractive index within the 
simulation domain is match, therefore reducing reflections, but a loss is introduced through the 
layer such that there is no field to return to the simulation domain when it is reflected.  OptiFDTD 
uses the Anisotropic PML, or so-called Un-split PML (UPML) implementation. The theory of the 
UPML is very well explained in the provided references [1-3]. The UPML boundary conditions are 
physical rather than numerical because their implementation is based on a Maxwellian formulation 
rather than on a mathematical model. Their absorbing properties are physically equivalent to the 
properties of an absorbing uni-axial anisotropic medium with the following permittivity and 
permeability tensors:

Where:

A plane wave incident on a half space composed of the above uni-axial medium with an interface in 
the  plane is purely transmitted into it, it has match the material on the 
simulation side of the boundary. This reflection/transmission property is completely independent 
of the angle of incidence, polarization or frequency of the incident wave.
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1.

2.

3.

•
•

The numerical implementation of the UPML in a 2D (X-Z) computational window requires the 
introduction of such perfectly matched absorbing layers on all four sides of the simulation domain.  
The corners, where a vertical layer overlaps a horizontal layer, require special attention. In these 
regions the permittivity and permeability tensors must be modified to:

The minimization of the numerical reflectance of the Anisotropic PML layers requires spatial scaling 
of the conductivity profile, the source of the required losses, from zero (at the interface of the PML) 
to a maximum value (the end of the computational window):

 where L is the thickness of the Anisotropic PML. Typical values for the parameter m are between 2 
and 4.

3.1.1 References
Bérenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of 
Computational Physics, 114, 185-200, (1994).
 Gedney, S. D., "An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices," 
IEEE Transactions on Antennas and Propagation, 1630-1639, (1996).
 Taflove, A., "Advances in Computational Electrodynamics—The Finite-Difference Time-Domain Method", Artech 
House, Boston, Ch. 5, (1998).

3.2 PMC / PEC boundary conditions and plane wave simulations
Perfect Magnetic Conductor (PMC) and Perfect Electric Conductor (PEC)  boundary conditions can 
be used as "mirrors" for specific field components.  These boundary conditions, along with 
symmetry within a given design can be used to reduce the computational domain size. They are 
mainly used in the following types of simulations:

 Plane wave simulation
 Domain reduced simulation for symmetric, periodic, or photonic band gap structures
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3.2.1 Perfect Electric Conductor 
The following figure shows the field components (perpendicular, , and parallel,  ) across a PEC 
wall (zero thickness) along with their image values.  Along the perfect electric conductor the parallel 
E field ( ) and total perpendicular H field ( ) must be zero.  Therefore from opposing sides of 
the boundary these components are equal magnitude and opposite sign.  The other field 
components are mirrored across the boundary.

9 Field across a PEC and image area

3.2.2 Perfect Magnetic Conductor 
The perfect magnetic conductor, as shown below, is a layer that enforces that the parallel H 
components and perpendicular E components are zero along the boundary while all other 
components are mirrored across the boundary.
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10 Field across a PMC and image area

When determining the use of symmetry it is useful to identify the fields that should be mirrored over 
the symmetry and identify the required conductor according to the descriptions above. In the 
structure seen below the E field (TE and therefore  ) must be mirrored.  As the  component 
with a waveguide solution is parallel to the symmetry axes it is necessary for a PMC boundary 
(Parallel E fields are copied) to be used to act as the symmetry axis for a structure such as depicted 
below.  this would allow only the top half of the simulation to be calculated yet yield the same 
results (for the half-space) as it would have if the entire simulation was run.  :

11 PMC wall in a symmetric waveguide excited by symmetric TE waveguide mode

3.2.3 Plane waves in symmetric and periodic structures
A plane wave within OptiFDTD can be created using the rectangular wave parameters in the Input 
Wave Properties  dialog box and using appropriate boundary conditions. The graph below shows 
how a simulation with a plane wave source can be realized within a symmetric structure. For a 2D 
TE simulation ( , , ), the boundaries parallel to the propagation direction are along the z 
axis, within the YZ plane.  As the E field ( ) is expected to be symmetric, this is the waveguide 
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solution for this polarization, about these boundaries and it is parallel to the plane containing the 
boundary the condition placed on this boundary should be that of a PMC in order to obtain a plane 
wave.

12 Plane wave in TE simulation
 For a 2D TM simulation ( , , ), it is the the  component with the waveguide solution 
that is parallel to the plane containing the boundaries.  As such it is PEC conditions that are 
required.

13 Plane wave in TM simulation

For a 3D simulation, a correct plane wave realization depends on the wave polarization (dominant 
field component) and the boundary condition setup at different edges of the propagation plane.

With Z-directed propagation and a polarization along Y, the dominant field component is .  This 
component is parallel to the YZ plane, requires a PMC, and perpendicular to the XZ plane, requires a 
PEC.
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14 Y-polarized plane wave propagating along Z with boundary conditions

If the wave propagating in the Z-direction is polarized along X, then the dominant field component, 
, is parallel to the XZ plane, requires a PMC, and perpendicular to the YZ plane, requires a PEC.

15 X-polarized plane wave propagating along Z with boundary conditions

3.3 PBC Boundary Conditions
OptiFDTD provides the option to use simplified Periodic Boundary Conditions (PBC). PBCs can 
work with other boundary conditions such as Anisotropic PML, PMC, and PEC. When creating 
simulations that are periodic or require plane wave sources a PBC can be used in place of 
determining the nature of the boundary condition and using the required PMC or PEC.
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The simplified PBC is based on Bloch's Theorem:

For a periodic layout with a period of  , the wave function,  , is written as the combination of a 
cell periodic component and a wave-like component:

The equation above needs to have a predefined value for the k  vector, , for the wave-like 
component; a quantity not feasible for a time domain simulation such as FDTD, particularly in the 
case of pulsed input (broadband). Therefore, the the problem is simplified by setting the k-vector in 
one specific direction as zero, which then leads to the input wave being the axis-propagated wave, 
and then the equation becomes:

With this simplification  is the field component at one edge of the simulation domain, and 
 is the corresponding field value at the boundary of the opposite edge.  The figure 

below shows the relationship between these values:

16 PBC applied to a 2D periodic mesh
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4 Light Sources
Light sources are the means through which energy is injected into an FDTD simulation.  There are 2 
light sources available to the user within OptiFDTD.

Input planes
Point sources

Input planes are used when light can be injected through a plane in the simulation domain. It 
propagates in a particular direction and has an intensity distribution across the incidence plane. 
Point sources can be used to simulate point emitters, for example quantum wells or quantum dots, 
or dipole sources.

4.1 Input planes
The FDTD numerical method yields the solution of an initial value problem where on the first time step of the 
simulation all fields are set to zero. The algorithm then requires the initial field excitation that will be propagated 
through the computational domain. The FDTD Total/Reflected Field formulation is used in defining a propagating 
incident field. 2D simulations support propagation in X and Z while 3D simulations support propagation in X, Y, 
and Z.

The OptiFDTD input plane is implemented through a Total/Reflected field formulation where the computational 
domain is separated into two sub-regions as shown in the figure below.  The two regions, the total field region and 
the reflected field region, are separated by the plane called the incident field where the incident wave can be 
generated by specifying the exact field distribution on the incident plane at each time interval..
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17 Total/Reflected field formulation

The Total Field Region contains information for both the incident and scattered (reflected) waves.  
As such this is the region where any structures under test ideally should be created. The Reflected 
Field will only contain propagating waves that are fields reflected from the Total Field Region.  A 
simple explanation would be to consider the incident field as being generated by a flashlight 
located on the incidence plane facing the assigned direction. Before starting the simulation the 
flashlight is turned off and the field values in the whole computational domain are equal to zero. 
The flashlight is switched on at   and illuminates only the Total Field Region. Provided that the 
excitation scheme is perfect, there should not be any light detected by an observer located in the 
Reflected Field Region, unless there are some obstacles within the total field region which would 
generate the reflections.

Either the continuous wave (CW, single wavelength) or pulsed (broadband) excitations can be used.

4.1.1 Continuous Wave (CW) excitation
In CW excitation, the time dependence of the incident field is a single frequency sinusoidal function 
which modifies the field amplitude. For example, an incident  field from a Z direction input 
plane in a 2D TE simulation would have the following form:
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where
 is the field amplitude

 is the transverse field profile at the incident plane location 
 is the initial phase (i.e. at ) of the field at the center of the source.

 is the angular frequency of the input wave.
 is a constant (equal to ) which defines the rise time coefficient of the exponential function used to ramp 

the CW signal to full amplitude.  In the CW case the optical wave propagates until it reaches the stationary state 
everywhere in the computational window.

4.1.2 Pulsed excitation
Pulsed excitations within OptiFDTD are created with a Gaussian pulse envelope function in time and 
has the form:

where

is the pulse envelope function,   tdelay  is the time delay and   is the standard deviation of the 
Gaussian function.

For pulsed excitation, the time stepping continues until the desired time pulse response is observed 
at the field points of interest. It is good practice to include observation points to monitor this 
response on top of any detectors required for the simulation.

4.1.3 Transverse profiles
There are four profile types available: Gaussian, rectangular, modal, and user-defined. The notation 
used here assumes a  direction input plane. Also, in these equations, , where  is the 
propagation constant. If the refractive index is real then  . See the page Constant 
Dielectrics (Including Loss)  for more details.

Please note that in OptiFDTD the definition of   is linked to the the full width at half 
maximum (FWHM) as 


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4.1.3.1 Gaussian

For 3D simulations, the Gaussian profile of the source is calculated using the scalar elliptical 
Gaussian beam equation [1] .  The coordinate system   is that of the Gaussian beam, with 

 being at the center of the beam waist and  being the propagation axis. The magnitude of 
the electric field on the input plane is given by

where   is the amplitude (a real constant).   and   are the beam waist radii, measured 
along the   and   axes. This is the distance between the center of the source, where , 
and where the electric field drops to .  and   are the beam radii a 
distance   from the beam waist,   and   are the radii of curvature, and   and 

 are the   and  contributions to the Gouy phase. These quantities are computed with the 
following equations.

In the above,  and  are the Rayleigh lengths, and , where 
 is the propagation constant.

When , the field has no azimuthal dependence and the Gaussian beam equation 
reduces to

where ,  ,  , 
, and  . This is also the equation used to compute the fields on 

the input plane for 2D simulations.

In OptiFDTD Designer, the user can set the "Full Width at 1/e²" of the Gaussian profile. This is equal 
to twice the beam waist radius of the intensity of the source. Note that the full with at   of the 
intensity is equal to the full with at  of the electric field.
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4.1.3.2 Rectangular

The rectangular profile is modeled as a plane wave with a finite width. The equation used is, in the 
coordinate system of the plane wave,

4.1.4 Tilted source
The propagation axis of the Gaussian, rectangular, and modal profiles can be angled with respect to 
the input plane normal.

4.1.4.1 Gaussian and rectangular

In a 2D simulation, the tilting angle is measured with respect to the input plane normal, 
anticlockwise around the  axis, regardless of input plane direction.

In a 3D simulation, a spherical coordinate system is used to define the tilting angle.  is the 
inclination angle, measured with respect to the input plane normal, anticlockwise around the 
tertiary axis.  is measured anticlockwise around the secondary axis. See the image below, where 
the solid blue line is the propagation axis.
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The right-hand rule is used to identify the secondary and tertiary axes, based on the direction of the 
input plane normal. For example, with a  direction input plane,  is the input plane normal (or 
primary axis),  is the secondary axis, and  is the tertiary axis.

Note that the propagation axis is really the direction of the propagation constant . If the material 
is isotropic, i.e. all three elements of the diagonal permittivity tensor are equal ( ), 
then the Poynting vector and the propagation constant are parallel. If the material is anisotropic, 
the Poynting vector and the propagation constant may not be parallel. In other words, the tilting 
angles  and  define the direction of the propagation constant which may not match the 
direction of the Poynting vector.

4.1.5 References
[1] Amnon Yariv and Pochi Yeh, Photonics, Oxford University Press, sixth edition, 2007.

4.2 Point Sources
A point source is used to model the situation of exciting a single point within the FDTD grid. This source can also 
be used to model dipole sources, because point sources induce dipole like field profiles in the other field 
components. In the correct plane the field component that is excited will radiate away from a single point in space 
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in a concentric spherical pattern as seen in the figure below.  2D simulations have the point source set to the 
(TE) and  (TM) components while 3D simulations allow the user to select from the  field components.

18 A Point source (2D Ey)

The point source within OptiFDTD is created as a soft source, a source were the excitation is added 
to existing fields as opposed to enforcing a value.  This is accomplished through the excitation of 
the current density .  For example Maxwell's curl equation for the  component becomes

where  is define from an analysis of the enclosed charged within the Yee cell and calculated as [1]

where  is the desired excitation.
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1.

4.2.1 Continuous wave (CW) excitation
The field used in the above expression for J when modelling a CW source is expressed as:

where
 is the field amplitude
 is the the initial phase offset which is the phase difference between points in the incidence plane. The phase 

offset can be adjusted to define the direction of the incident field.
 is the angular frequency of the input wave.
 is a constant (equal to ) which defines the rise time coefficient of the exponential function used to ramp 

the CW signal to full amplitude.  In the CW case the optical wave propagates until it reaches the stationary state 
everywhere in the computational window.

4.2.2 Pulsed excitation
The field used in the above expression for J when modelling a pulsed source is expressed as:

where tdelay is the time delay for the signal  and T is the standard deviation of the Gaussian function 
that forms the envelope of the pulse in time.

4.2.3 References
Fumie Costen, Jean-Pierre Bérenger, Anthony K. Brown, "Comparison of FDTD Hard Source with FDTD Soft 
Source and Accuracy Assessment in Debye Media". IEEE Trans. on Ant. and Prop., Vol. 57, No. 7, July 2009.

•
•

 Point sources can work with other kinds of sources (such as input planes).
 When a Point source is used as the key input. The normalized power calculation will be disabled in 
analyzer


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5 S-Parameters
The S-Parameter functionality within OptiFDTD uses ports across input and output waveguides into 
a structure in order to provide the S-Parameter matrix.  These S-Parameters are derived from the 
forward and reverse propagating modes obtained through eigenmode expansion.

5.1 Technical Background on the Eigenmode Expansion of an 
Electromagnetic Field

The total electric and magnetic fields propagating within a waveguide are equal to the summation 
of both the forward and reverse propagating fields 

(1)

(2)

This can be represented as a linear expansion of the electric and magnetic fields, where T and R are 
complex weights of each forward and reverse propagating mode and m is an integer representing 
different modes supported by the waveguide.

(3)

(4)

(5)

(6)

This in turn allows the total electric and magnetic fields to be expressed
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(7)

(8)

For an orthonormal basis of guided modes m and n, the inner product is defined as,

(9)

Where the cross product is equal to,

(10)

In order to find the coefficients of the forward and reverse propagating fields (   and ) for a 
single mode we can start by using the cross product and place equation (7)  into equation (10) ,

(11)

(12)

Placing equation (12)  into equation (9)  we get,

(13)

Using orthonormality (equation (9) ) we get the following equation, using the fact that the inner 
product integral is equal to 1 when m = n and 0 when m   n

(14)

Following the same derivation for   we get,
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(15)

 and   can now be obtained

(16)

(17)

Based on the definition of  and , port to port scattering parameters can be calculated by 
using the coefficients of the guided modes at input (m) and output (n) ports.

The S parameter between port m and port n at a single frequency is given by,

(18)

Once the s-parameters are calculated, an s-matrix can be formed to calculate the relationship 
between the input signals and the output signals of a device for a single wavelength/frequency.

(19)
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5.2 Calculate and Export S-Parameters with OptiFDTD
The S-Parameter port is a combination of an input plane and an observation area. Currently it is 
designed to be used with straight waveguides. The following procedure outlines the basic steps 
that can be followed to generate S-Parameter data from an OptiFDTD desgin.

Place one S-Parameter port for every input/output.
Configure the S-Parameter ports.

Select the input mode and direction (from the red line to the blue line) for for every S-parameter port 
(Port Properties -> Reverse Direction)
Enter the input wavelength (Port Properties -> Input Field -> Wavelength). All the ports need to have the 
same wavelength.
 Select the input type, CW for S-Parameters in a single frequency  or Sine Modulated Gaussian for S-
Parameters in a range of frequencies (Port Properties -> Input Field -> CW/Sine Modulated Gaussian). All 
the ports need to have the same input type.

Generate the S-parameter script (Scripting -> Scanning Script)
Run simulation

Open simulation settings under Simulation -> Simulate 3-D
Check Simulate Using Script. Make sure that the simulation time window is sufficient enough to 
either reach steady state (CW) or there is no EM field left in the simulation domain (Gaussian) 
Click run to start the simulation. The simulation will run once for every S-Parameter Port placed in the 
design.

Once the simulation is complete open OptiFDTD analyzer file generated by the simulator.
To export the S-Parameters go to Tools -> S-Parameters and click on Export. The S-parameters are exported in 
polar coordinates.
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6 Plane Wave Expansion (PWE) method
Maxwell's curl equations for the electric and magnetic fields in a transparent, time-invariant, source 
free, and non-magnetic medium can be combined in terms of the magnetic field and be written in 
the following form:

where

This equation is often referred to as the the Master Equation, and represents a Hermitian eigen-
problem.  The equivalent could not be said if the curl equations where combined such that the 
expression was in terms of the electric electric field.

Bloch theorem states that, assuming infinite periodicity, the magnetic field will take the form:

where

for all combinations of lattice vectors R  . Introducing the Bloch form into the master equation 
yields the master equation in operator form:

This is the fundamental equation, which needs to be solved for a plane wave expansion calculation. 
The equation is transformed into a finite problem by expanding the magnetic field in a finite basis of 
simple plane waves. Different approaches can be explored to solve the final discretized problem. 
The result of solving the discretized problem is the dispersion relationship between the frequencies 
of the modes and wave vector k, usually plotted in the form of a band diagram.

For an example of the application of this numerical method within OptiFDTD see the tutorial 
"Photonic Crystal Band Diagram".
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6.1  References:
J.D. Joannopoulos, R.D. Meade, and J.N. Winn, "Photonic crystals, Molding the flow of light”, Princeton 
University Press, 1995.
 S.G. Johnson, J.D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell's equations in a 
planewave basis", Optics Express 8, no.3, p.173-190, 2000.
 S.Guo, S.Albin, "Simple plane wave implementation for photonic crystal calculations", Optics Express 11, no.2, 
p.167-175, 2003.
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7 Post-simulation Data Analysis
OptiFDTD consists of three primary software tools: Designer, Simulator, and Analyzer.  While 
previous sections have discussed the Designer and the calculations within the Simulator, this 
section deals specifically with the post-processing capabilities made available through the Analyzer 
product.

7.1 Spectral response (Fourier transforms)
FDTD is a time domain numerical method and as such a single simulation can contain a broadband 
spectral response.  This spectral response is obtain through the use of the Fourier transform, 
specifically in the case of a numerical method the solution is obtained through the discretized 
Fourier transform (DFT).

where   describes the discretized time domain response sampled in steps of ,   is the 
number of samples in time, and   is the angular frequency.

OptiFDTD accomplishes the DFT through a fast Fourier transform algorithm where some accuracy is 
given up in the interest of ensuring computational speed.  In the FFT algorithm the spectral 
response that is obtained is over the frequency range of  where the  is the sampling 
frequency based on the step size in time and ensuring the Nyquist condition.

The frequency domain sampling step size is therefore given by

The parameters for the DFT spectral results can be preset within the simulation windows under DFT 
Options  prior to running a simulation.  These defined values will be used for the calculations for 
observation lines, and areas during the simulation and made available to the user from within 
OptiFDTD Analyzer. In contrast, observation points record the full time information for the fields 
and as such the DFT can be recalculated. Initial results will be based on the user defined values from 
prior to the simulation being run but can be changed within Analyzer.
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7.2 Power calculation
Electromagnetic power can be calculated within OptiFDTD through the use of observation lines (2D) 
or observation areas (3D) and the OptiFDTD Analyzer.  Power for propagating waves is a function of 
both the intensity over a given surface as well as the area over that surface. The intensity is the 
time-average of the quantity known as the Poynting vector.

7.2.1 Poynting Vector
The Poynting vector, , is given as

where  and  are complex vector fields.  The complex vector fields can be expressed as

where  is the angular frequency,  is the wave vector, and   is the position vector.  It should be 
noted that the quantities  and  are the complex field amplitudes and that other conventions 
use the RMS values for these quantities, which leads to a difference of 1/2 between the two 
conventions. 

The time-average of the Poynting vector, using the complex quantities, yields

Note that while these are complex quantities, the Poynting vector shown in OptiFDTD is the 
amplitude.

7.2.2 Intensity and power
The intensity of an electromagnetic field is defined as the the time-average of the Poynting vector 
and the power is the surface integral of the intensity. Focusing on the case where the power over 
the XY-plane is required, the Z-component of the Poynting vector is used, the power can be 
expressed as
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This derivation allows the power flowing through a plane parallel to the XY-plane to be expressed as 
the sum of two quantities:  which is based on the   component and   which is based 
on the  component.

7.2.3 Power and field amplitude
The fields of a source can be scaled either by their amplitude or their power. For the cases of a 
Gaussian or rectangular transverse profile in a homogeneous medium, the power  and amplitude 

 are related by simple expressions, given below. These equations are useful when defining a 
source in OptiFDTD Designer but they are not involved in the post-simulation data analysis 
performed by the software.

Gaussian in 2D:

Gaussian in 3D, assuming :

Rectangular in 2D:

Rectangular in 3D:

Note that the power in 2D and 3D simulations is measured in W/m and in W, respectively.
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7.3 Far Field Transform

7.3.1  Fraunhofer approximation
Narrow angle far-field transform being used in OptiFDTD is based on the Fraunhofer approximation:

 At a large distance  , the far-field position can be expressed by the far-field angle approximation:

Where the x-directional angle ( ) is the angle between the original YZ-plane and the shortest 
straight line connecting the point and the Y axis. The Y-directional angle ( ) is the angle between 
the original XZ-plane and the shortest straight line connecting the point and the x axis. The far-field 
angles are illustrated in the figure below.

19 Far-field angle
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Using the angle approximation described above, the far-field formula can be simplified as:

7.3.2  Fresnel-Kirchhoff Diffraction
The wide angle far-field transform is based on the Fresnel-Kirchhoff diffraction formula.

Where  is the vector from near-field to far-field.

The far-field position can be expressed using the far-field angle and the far-field distance . 
Therefore in the wide angle far-field transform, the user needs to specify the far-field distance.

7.3.3 Far-field Transform - Surface Equivalence Theorem
For cases where the field cannot be approximated by a single scalar field, the far-field transform can 
be calculated using the surface equivalence theorem. This theory is a direct implementation of the 
theory presented in from Chapter 8.4 from Taflove [1 ], the complete theory can be found there.

The basis for this transformation is that knowledge of the electric and magnetic currents on any 
closed surface can be used to calculate the electromagnetic fields at any other point via an 
integration. In an FDTD algorithm, it is natural to choose a rectangular prism structure made from 
planes that match the Yee mesh. The surface currents are then given by:

where   is the electric current density and   is the magnetic current density on the imaginary 
surface. Using the assumption that all but one of the planes detects any meaningful field amplitude, 
the six areas can be reduced to one plane. Note: This is for valid for either directional beams or 
when one plane captures most of the power from a scattering simulation. If the electric and 
magnetic fields are to be calculated at position   and the source position is given by  , then the 
vector pointing from source to observation point is given by:

The above formula assumes that the far-field plane is far away from the near field. OptiFDTD 
uses the above equation to calculate the narrow angle far-field transform.


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For large distances the following approximation can be made:

(20)

where   is the angle between   and  . 

The electric and magnetic fields are then given by:

where   is the intrinsic impedance of free space,   is the wavenumber and   is the 
magnitude of the observation position vector. Finally, intermediate expressions  ,  ,  , and 

 are given by:

The electromagnetic field can be calculated anywhere at large distances away from the near field 
plane, to satisfy assumption (20) . To follow the far field calculation in the previous section, the 
fields are calculated on a plane at  , where   is the user supplied distance.  

[1] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-
Domain Method, Third Edition. 2005, ch. 8, sec. 4, pp. 338-343
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7.4 Heat Absorption
It is known that the real electromagnetic power transmitted through a closed surface S into the 
volume V is equal to the power loss through Joule heating (conduction current) and the power loss 
resulting from the polarization damping forces.

 From the complex Poynting vector theorem, the time-average heat absorption intensity is 
expressed as:

where   is the wavelength dependant conductivity.

 In OptiFDTD the heat absorption intensity for each polarization, for each cell within the observation 
area, can be expressed as:

where the subscript letters  represent the polarization while  indicate the 
position index.

The total heat absorption for one observation slice will be the integral of the heat absorption 
intensity in the volume

where  and  are the mesh size in the observation plane, and  is the mesh size in the 
direction perpendicular to the observation plane. It is necessary for the heat absorption calculation 
that the material conductivity is known.  The relationship between permittivity and conductivity 
can be expressed in terms of the complex refractive index:
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For Lorentz-Drude dispersive materials, 

As before the imaginary component of the relative permitivity can be used to determine the 
expression for the conductivity.
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