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This document describes the analysis of fibre bragg gratings by coupled mode
theory and transfer matrix theory. These methods are used in the OptiSystem
FBG Sensor component.
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1 Definitions

The optical fibre or waveguide is presumed to have one mode of a fixed polariza-
tion. This document follows the usual coordinate system of optical waveguides.
The propagation is in the direction of the Z axis. The X and Y axes form the
basis of the transverse plane. The waveguide consists of a structure of variable
refractive index in the transverse plane, but with no variation in Z. On such a
structure, the solution of the time-harmonic Maxwell equations separate with
the Z coordinate. For example, typical electromagnetic field components in the
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transverse plane of a wave travelling from left to right (positive Z) could be of
the form

Et(x, y, z) = et(x, y)e−jβz (1)

In equation (1), et(x, y) is the field distribution of the fundamental mode in the
transverse plane, and β is the propagation constant of the fundamental mode.
The propagation constant, β, is related to the modal index, nmodal, as

β = k nmodal (2)

where k is the free space wavenumber

k =
2π

λ
(3)

A grating is a periodic variation of the refractive index (or permittivity) in
the direction of propagation. These variations are usually applied at the fibre
core for maximum effect. Suppose the refractive index of the core to be n0,
and suppose this refractive index is varied above and below this value by the
quantity ∆n. Let f(z) be a periodic function with period Λ . Suppose f(z)
varies anywhere between -1 and +1. The variation of the permittivity in the
grating can be written as

∆ε(x, y, z) = 2P (x, y) f(z)A(z) n0 ∆n (4)

n0 is the refractive index before the application of the grating. The function
P (x, y) indicates the position of the grating in the transverse plane. It takes
the value 1.0 in places where the grating has been applied, and zero outside of
this. For example, P (x, y) could be 1.0 for x and y inside the core of the fibre,
and zero elsewhere. ∆n is the maximum deviation (greater or smaller) of the
refractive index due to the grating. A(z) is the apodization, a slowly varying
function that is used to modulate the index modulation, ∆n. f(z) indicates the
shape of the grating in the propagation direction. It takes a value between -1
and + 1 to modulate the maximum deviation, ∆n. For example, for a grating
made of multilayers, this would be a rectangular-shaped function. For fibre
Bragg gratings made from UV exposure, the shape is often a circular function,
such as sine or cosine. In any case, in this work f(z) is composed as a cosine
series,

f(z) = 2

∞∑
n=1

Fn cosnKz (5)

K =
2π

Λ
(6)

As such, f(z) can be any continuous function that is symmetric about the
centre of the grating period interval. It is possible to find the coefficients in the
expression from the Fourier integral:
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Fn =
1

Λ

∫ Λ

0

f(z) cosKnz dz (7)

f(z) is a real-valued function, so the Fn coefficients are real.

2 Electromagnetics

Maxwell’s equations can be specialized to the case of waveguides. The waveguide
is characterized by the permittivity, ε, being independent of propagation, i.e. ε
is not a function of Z. The permittivity of the waveguide can be represented as
a function of transverse coordinates only,

ε(x, y) (8)

On the other hand, after the grating is applied, there will be variation of permit-
tivity in the direction of propagation, but of a specific form that involves f(z).
Call ε̃ the permittivity after the grating has been applied to the waveguide.
This permittivity is the sum of the waveguide permittivity and the deviations
defined by ∆ε:

ε̃(x, y, z) = ε(x, y) + ∆ε(x, y, z) (9)

Where ∆ε is given by (4). When the magnetic field is eliminated from the time
independent form of Maxwell’s equations, the electric field remains and follows

∇2E + k2ε̃(x, y, z)E = ∇(∇ ·E) (10)

Propagation on waveguides can be simplified by separating the longitudinal (Z)
coordinate from the transverse coordinates. The field and operator are written
as vector sums

E = Et + Ez ẑ ∇ = ∇t + ẑ
∂

∂z
(11)

Substitution in (10) leads to

∇2Et + k2ε̃(x, y, z)Et = ∇t(∇t ·Et +
∂Ez
∂z

) (12)

The last term has a londitudinal component of the electric field, but it can be
almost eliminated by considering the divergence equation:

∇ · (εE) = 0 (13)

(13) separates into longitudinal and transverse parts as

∇2
t · (ε̃Et) +

∂ε̃

∂z
Ez + ε̃

∂Ez
∂z

= 0 (14)
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However, ∂ε/∂z � ε because the variation in z is only from the grating, and
∆ε� ε. Therefore the longitudinal term in (12) can be replaced with the first
term of (14) to get

∂Et

∂z2
+ k2ε̃(x, y, z)Et = ∇t(∇t ·Et −

1

ε̃
∇t · (ε̃Et))−∇2

tEt (15)

an equation with only the transverse field components as dependent variables.
When ∆n = 0 (when there is no grating), the operators after the first term are
all independent of z. In this case the electromagnetic fields will be a combination
of modes. The longitudinal variable, Z, separates and a left to right travelling
wave solution can be written as

Et(x, y, z) = et(x, y)e−jβz (16)

where et(x, y) is the mode field distribution, and β is the propagation constant
of that mode. The mode field is normalized as∫ +∞

−∞

∫ +∞

−∞
et(x, y) · et(x, y) dxdy = 1 (17)

Modes are mathematically equivalent to eigenvectors, and the propagation con-
stant is related to an eigenvalue. To see them from this point of view, it is
enough to rearrange (15) as

∂2Et

∂z2
= −k2ε̃(x, y, z)Et + L(Et) (18)

The terms collected into L form a linear differential operator. That operator
has the permittivity ε̃ in both the numerator and denominator. Therefore the
operator is not changed very much by replacing ε̃ with ε. Putting the modal
wave (16) into (18) for the waveguide with no grating (permittivity ε) gives

β2et(x, y)e−jβz = k2ε(x, y, z)et(x, y)e−jβz − L(et(x, y)e−jβz) (19)

Written this way, the right travelling wave in (16) is interpreted as an eigenvector
of the operator

k2ε(x, y, z)− L (20)

and the eigenvalue is β2. A similar wave travelling to the left, et(x, y)ejβz, is
also an eigenvector of β2, since

β2et(x, y)ejβz = k2ε(x, y, z)et(x, y)ejβz − L(et(x, y)ejβz) (21)

2.1 Slowly Varying Envelope Approximation

When a grating is applied, the optical field in the transverse plane does not
change, but the very small periodic reflections from the grating interfaces can
sometimes add up to a significant total reflection. Therefore a solution is sought
with these properties. The transverse variation is still thought to be proportional
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to et(x, y), as in (16), but there will need to be two waves, one going from left
to right and the other going the other way that was created from the reflections:

Et(x, y, z) = a(z)et(x, y)e−jβz + b(z)et(x, y)ejβz (22)

The amplitude of the right travelling wave is a(z), and the amplitude of the
left travelling (reflected) wave is b(z). The wave amplitudes are functions of
the propagation distance, z, because the grating causes continuous transfer of
optical power from one wave to the other. The influence of the grating over
a few wavelengths is very small, it is significant only when accumulating over
many wavelengths. Therefore (22) is a slowly varying envelope approximation
(SVEA) as well. a(z) and b(z) are functions of z, but they do not change
significantly over one wavelength. The rapid variations are taken up by the
exponential functions.

To find the equations governing the two unknown wave amplitudes a(z) and
b(z), put (22) in the left side of (18):

∂2Et

∂z2
=

a′′(z)e−jβzet(x, y) − 2jβa′(z)e−jβzet(x, y) −β2a(z)e−jβzet(x, y)
+ b′′(z)ejβzet(x, y) + 2jβb′(z)ejβzet(x, y) −β2b(z)ejβzet(x, y)

(23)
When (22) is put in the right hand side of (18), and expanding the permit-

tivity as in (9),

∂2Et

∂z2
=
−k2ε(x, y, z)a(z)et(x, y)e−jβz −k2ε(x, y, z)b(z)et(x, y)ejβz

−k2∆ε(x, y, z)a(z)et(x, y)e−jβz −k2∆ε(x, y, z)b(z)et(x, y)ejβz

+a(z)L(et(x, y)e−jβz) +b(z)L(et(x, y)ejβz)
(24)

When the right hand sides of (23) and (24) are set equal, there are a number
of terms that cancel, owing to the eigenvector relations (19) and (21). After
eliminating these terms and writing the right and left going waves separately:

0 =
et(x, y)e−jβz

[
a′′(z)− 2jβa′(z) + k2∆ε(x, y, z)a(z)

]
+ et(x, y)ejβz

[
b′′(z) + 2jβb′(z) + k2∆ε(x, y, z)b(z)

] (25)

Next the vector property and dependence on x and y is removed by taking
the inner product with the vector mode field et(x, y) and integrating over the
entire transverse plane. Most factors reduce to 1 because of the normalization
of the vector mode (17). The exception is third term, since ∆ε(x, y, z), defined
in (4), depends on transverse coordinates that are independent of the mode field
distribution. To accommodate this independence, define the overlap integral

Γ =

∫ ∞
−∞

∫ ∞
−∞

P (x, y) et(x, y) · et(x, y) dxdy (26)

With this definition, (25) reduces to an ordinary differential equation:

e−jβz[a′′(z)− 2jβa′(z) + 2k2n0∆nΓf(z) a(z)]
+ ejβz[b′′(z) + 2jβb′(z) + 2k2n0∆nΓf(z) b(z)] = 0

(27)
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3 Coupled Mode Equations

The equations (27) can be solved approximately by neglecting terms that will
be much smaller than the rest. For example, since a(z) abd b(z) are slowly
varying, their second derivatives are much smaller than the other terms and can
be neglected. Multiplying (27) by ejβz will give an equation that can estimate
the rate of change of a(z)

−2jβa′(z) + 2k2n0∆nΓf(z)e2jβz b(z) = 0 (28)

The second and third terms were ignored because they are rapidly oscillating
with z, and therefore will not contribute when the equation is integrated with
z to calculate a(z). The last term is retained because, although both e2jβz and
f(z) are rapidly varying, there is a possibility that the product e2jβzf(z) might
be slowly varying in some conditions. To see this, use the definition of f(z) in
(5) to expand the terms

e2jβzf(z) = e2jβz
[
F1e

jKz + F1e
−jKz + F2e

2jKz + F2e
−2jKz...

]
= F1e

j(2β+K)z + F1e
j(2β−K)z + F2e

j(2β+2K)z + F2e
j(2β−2K)z...

(29)
For example, e2jβzf(z) could be a significant influence in (28) if 2β took a value
close to K, the wavenumber of the grating. The optical wavelength that leads
to the condition 2β = K is called the Bragg wavelength, the first order response
of the grating. Looking through the expansion, it is apparent that e2jβzf(z)
could be slowly varying, and therefore influential, when the optical wavelength
makes 2β close to 2K instead of K. The latter condition is the second order
response of the grating. If the function f(z) has a Fourier coefficient F2 that is
not zero, then the grating will show reflection at that wavelength too. And so
on for all the higher order terms.

It is convenient to define a detuning, δ, as a measure of how close 2β is to
one of these wavenumbers. For example, to investigate the first order grating
spectrum, define the detuning as

δ = 2β −K = 2π

(
2n

λ
− 1

Λ

)
(30)

where n is the waveguide modal index. The maximum response occurs at the
Bragg wavelength, λB , when δ is zero:

λB = 2nΛ (31)

To investigate the first order grating spectrum, let δ vary over a range of size K
centered at zero. With this small value of δ, only the second term on the right
hand side of (29) is significant, and (28) reduces to

a′(z) = −jk∆nΓF1e
jδzb(z) (32)

(in (32) the ratio n0/n is considered to be close to 1.)
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A similar approach can be used to estimate the rate of change of b(z). The
second derivatives in (27) are ignored, and then the equation is multiplied by
e−jβz. When the rapidly varying terms are neglected, the remaining terms are

2jβb′(z) + 2k2n0∆nΓe−2jβzf(z)a(z) = 0 (33)

The slowly varying term of e−2jβzf(z) is e−jδzF1, and the equation for the
evolution of b(z) becomes

b′(z) = jk∆nΓF1e
−jδza(z) (34)

Noting that the overlap integral, modulation index, and first order Fourier co-
efficient all contribute in the same way, it is more convenient to gather them
together in one number, the coupling coefficient, γ:

γ = kΓF1∆n (35)

This definition leads to the most compact form of the coupled mode equations.
These clearly show the interaction of forward and backward waves:

da

dz
= −jγejδz b(z)

db

dz
= jγe−jδz a(z)

(36)

3.1 Solution of the Coupled Mode Equations

The Coupled Mode Equations (CME) (36) can be easily solved for the case
of uniform gratings. If the grating properties, such as modal index, grating
period, index modulation, and so on, do not change with z, the solution can be
constructed from elementary functions. The basic properties of the solution can
be seen by eliminating b(z) from (36):

a′′(z)− jδa′(z)− γ2a(z) = 0 (37)

Letting a(z) = esz will show some properties of the possible solutions. The s
must satisfy

s2 − jδs− γ2 = 0 (38)

which has two possible solutions

s1 = jδ/2 +
√
γ2 − δ2/4

and
s2 = jδ/2−

√
γ2 − δ2/4 (39)

If the detuning, δ, is less than 2γ, the solution for the right travelling wave, a(z),
will vary with z exponentially. This means that this wave must vanish after at
least some length of propagation, and the grating is reflecting optical power at
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this wavelength. The range of wavelengths at which the grating reflects optical
power is called the stopband. The condition at the edges of the band are

δ2 = 4γ2 (40)

which happens for the detunings

δ1 = 2γ and δ2 = −2γ (41)

The optical wavelengths at these two detunings are

λ1 =
2πnΛ

π + γΛ
(42)

λ2 =
2πnΛ

π − γΛ
(43)

Optical wavelengths in the range λ1 < λ < λ2 (the stopband) may be partly
transmitting and partly reflecting for a grating of some length. However, if the
grating is made longer it will tend to become not transmitting and reflecting all
optical power.

3.2 Stopband

In the stopband, the real part of s is written

q =
√
γ2 − δ2/4 (44)

The coupled mode equations are an initial value problem. If the right and left
wave amplitudes are given at one end of the grating, e.g. z = 0, the CME may
be used to find the waves at the other end of the grating (z = L). Suppose the
two wave amplitudes at z = 0 are known and given by

a(0) = a0 (45)

b(0) = b0 (46)

The first CME gives a relation between b0 and the rate of change of a at that
point

a′(0) = −jγb0 (47)

When (37) is solved, the initial values (45) and (47) will specify a unique value
for a(z):

a(z) = ejδz/2
[
a0 cosh qz −

(
γb0
q

+
δa0

2q

)
j sinh qz

]
(48)

To find b(z), find the derivative of (48)
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a′(z) =
jδ

2
ejδz/2

[
a0 cosh qz −

(
γb0
q

+
δa0

2q

)
j sinh qz

]
(49)

+ ejδz/2
[
a0q sinh qz −

(
γb0
q

+
δa0

2q

)
jq cosh qz

]
(50)

and substitute in the first CME

b(z) =
j

γ
e−jδz

da

dz
(51)

to get

b(z) =
j

γ

jδ

2
e−jδz/2

[
a0 cosh qz −

(
γb0
q

+
δa0

2q

)
j sinh qz

]
+
j

γ
e−jδz/2

[
a0q sinh qz −

(
γb0
q

+
δa0

2q

)
jq cosh qz

]
(52)

Apparently these solutions for the waves a(z) and b(z) are all exponential func-
tions of qz. Therefore the grating in the stopband will transmit some light if
the grating is sufficiently short. However, as z → ∞, the transmitted optical
power will have to go to zero. For this reason the range λ1 < λ < λ2 is called
the stopband.

3.3 Passband

Optical wavelengths outside the range λ1 < λ < λ2 are in the passband. In this
case, both terms in (39) are imaginary. For the passband, define

p =
√
δ2/4− γ2 (53)

Solving for a(z) and b(z) as in the stopband gives similar expressions, with the
hyperbolic functions of qz replaced by circular functions of pz

a(z) = ejδz/2P1 (54)

b(z) = − δ

2γ
e−jδz/2P1 +

j

γ
e−jδz/2P2 (55)

where

P1 =

[
a0 cos pz −

(
γb0
p

+
δa0

2p

)
j sin pz

]
(56)

P2 =

[
−a0p sin pz −

(
γb0
p

+
δa0

2p

)
jp cos pz

]
(57)

Since a(z) and b(z) are oscillating instead of exponential, in the passband the
grating is transmitting most of the optical power.
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4 Non Uniform Gratings

If one or all of the grating properties (grating period, index modulation, modal
index ...) are changing with z, the solutions of the CME given so far will not
apply. To manage the non-uniform case, the grating is divided into a sequence
of short uniform gratings, each one having properties approximately equal to
the local values of the non-uniform grating.

The transfer matrix will give the wave amplitudes at one end of a grating
given the amplitudes at the other end. The solutions (48), (52), (54), and (55)
will find a(L) and b(L) from their values at z = 0, a0 and b0. The transfer
matrix is defined [

a(L)
b(L)

]
=

[
T11 T12

T21 T22

] [
a0

b0

]
(58)

The first column of the transfer matrix is found by setting a0 = 1 and b0 = 0.
The second column is found by setting a0 = 0 and b0 = 1. The nonuniform
grating is divided into nseg segments of equal length, ∆z

∆z =
L

nseg
(59)

each of these segments is taken to be a uniform grating, with constant grating
parameters. A transmission matrix, Ti is found for each uniform segment, whose
grating parameters are equal to the average value of the grating parameters at
the corresponding location in the nonuniform grating. The transmission matrix
of the entire grating is found by matrix multiplication of all the transmission
matrices of the individual segments

T = (Tnseg )(Tnseg−1)...T3T2T1 (60)

The spectrum of the whole grating can be found from the transfer matrix that
is the product of all the grating segment transfer matrices.

4.1 Chirp

For example, the grating period might not be the same over the whole grating.
Sometimes optical gratings are ”chirped”, the local period is one value at one
end (z = 0) , but the period changes continuously over the length of the grating
so that the local period has a different value at the other end (z = L). The
local period, Λ(z) for the chirped grating is

Λ(z) = Λ0 −
z − L/2

L
λc (61)

where Λ0 is the period of the unchirped grating and λc is the level of chirp.
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4.2 Apodization

The level of index modulation is sometimes graded over the length of the grating.
The apodization can make the index modulation less when its value is less than
1, as indicated in (4). It can be applied with a Gaussian function, as

A(z) = exp

{
− ln 2

[
2(z − L/2)

sL

]2
}

(62)

where s is the Gaussian apodization parameter.

5 Sensors

The spectra of Fibre Bragg gratings can be sensitive to environmental condi-
tions, such as temperature or mechanical strain. This section describes how
temperature and strain modify the physical parameters, and therefore how the
spectrum will be modified by strain or temperature.

5.1 Temperature Sensor

Increase or decrease in temperature from a reference level will cause a change in
the refractive index of the material of the fibre. Since the temperature change
is expected to be applied equally in the transverse plane, the change is expected
to be applied to the modal index, n

∆n = ξn∆T (63)

where ξ is the thermo-optic coefficient of the glass in the fibre and ∆T is the
temperature change from the reference temperature.

In addition to the thermooptic effect, the grating period is also affected by
the elongation of the fibre from the thermal expansion coefficient

∆Λ = ηΛ(T − Tref ) (64)

5.2 Strain Sensor

Strain is a mechanical stretching of the fibre along its axis. Therefore the grating
period is directly affected as

∆Λ = εΛ (65)

As with temperature, strain also affects refractive index. The relation is quan-
tified by the elastooptic parameters, P11 , P12 and the Poisson ratio, ν. The
refractive index is affected as

∆n = −1

2
n3ε[P12 − ν(P11 + P12)] (66)

When strain and temperature change are applied to the grating, the grating
parameters are modified accordingly. The level of strain or temperature change
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can be deduced from observing a change in the grating spectrum. The most
noticeable effect on the spectrum is a shift in the maximum reflection / minimum
transmission. Temperature and strain can cause a shift in the Bragg wavelength.
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