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Abstract

In this paper, the guided modes as well as the radiation modes for step index
optical fibers are obtained. The problem of scattering of a dominant guided mode in
an optical fiber section due to a step transition to another fiber section of different
refractive index is treated rigorously using the mode-matching technique, This
technique employs the complete spectrum of modes and results in a system of
singular integral equations. Using a numerical method that accounts for the kernel
singularities. the system of singular integral equations is converted into a finite system
of linear equations, which is amenable for exact numerical solution. The radiation
power due to the discontinuity as well as the power coupled to the second fiber
section are evaluated. The power balance is verified, where the summation of the
reflected and radiated power together with that coupled to the second fiber section are
found equal to the power of the incident mode,

I. Introduction

A significant factor in any optical fiber system installation is the interconnection of fiber
sections in low-loss manner. Since the optical power that can be coupled from one fiber to another is
limited by the number of modes that can propagate in each fiber [1], the discontinuity losses in the
single-mode optical fiber is more dangerous than that of the multi-mode optical fiber. The
discontinuities along an optical fiber can be classified into three categories. The first is the mechanical
misalignment. which may be longitudinal, lateral, and/or angular misalignment. The second is the
geometrical discontinuity. which results from the core diameter mismatch, The third is the differences
in waveguide characteristics such as. the numerical aperture and core refractive-index-profile
mismatches [1].

Numerous technigues exist for analyzing optical waveguide systems that have axial
discontinuities. The methods of analysis of optical waveguide discontinuities can be classified as modal
and non-modal methods, Non-modal methods of analysis do not employ a modal representation of the
optical field. One of the non-modal methods is the beam propagation method (BPM). Like the non-
maodal methods of analysis. the standard (BPM) gives only information about the total optical field but
fails to give a physical insight of the obuained results. Moreover. this method is only efficient for
weakly guiding structures presenting small deviation angle and having no polarization dependence.
Modal methods of analysis are based on the decomposition of the total optical field into local guided
and radiation modes, thus giving physical insight of the problem in view of the modal components and
overcoming most of the limitations of the non-modal methods. The mode-matching technique is the
most common among the modal methods of analysis used for treating discontinuity problems along the
optical fiber.

Like all dielectric waveguides the optical fiber supports a finite number of guided modes, which
is supplemented by an infinite continuum of unguided radiation modes 2], The electromagnetic fields
in the optical fiber can be completely represented by emploving these two sets of modes. The guided
modes describe the propagation of light along nonabsorbing optical waveguides in region sufficiently
far from any source of excitation. where the spatial steady state is reached but the radiation modes
describe the spatial transient. due o discontinuities, or any other irregularities along the waveguide [3].
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The guided modes of step-index optical fibers are treated in many publications [4]. The radiation
modes of optical fibers were obtained in [3] considering infinite radius of the cladding. The method of
characteristic phase shifts [5] is employed in the present work to gei the radiation modes of the finite
cladding optical fiber. The radiation modes are orthogonal to each other with respect to the mode order
as well as the radial propagation constant. The two sets of modes (guided and radiation) are also
orthogonal to each other.

In the present work, the problem of power coupling between two single-mode optical fiber
sections with different refractive indices is analyzed wsing the mode-matching technique. The dominant
guided mode of the first fiber section carrying a unity power is assumed incident on the discontinuity
plane. The fields reflected back to the first section as well as those transmitted to the second fiber
section are expanded in terms of the complete set of modes of the corresponding fiber section with
unknown excitation coefficients. The transverse fields are matched on the two sides of the discontinuity
plane resulting in a systemn of singular integral equations. A numerical method that accounts for the
kernel singularities is used to convert the system of singular integral equations info a finite system of
linear equations. which is amenable for exact numerical solution.

The power loss due to the discontinuity as well as the power coupled to the second section are
evaluated. To verify the validity of the obtained results the power balance is investigated, where the
power loss together with that coupled to the second fiber section should be equal to the power of the
incident wave.

2. The Complete set of modes of the step-index optical fiber

The complete set of modes of the optical fiber consists of guided modes and radiation modes.
The guided modes of the step-index optical fiber are treated in many publications [1], [2], [3], [4],- The
radiation modes can be obtained by using the characteristic phase shifts method [5].

2.1. Radiation modes of the step-index optical fiber

The radiation fields in the optical fiber surroundings and in the far zone cannot be represented by
the guided modes alone. The spectrum of such an open waveguide should be completed by adding the
continuous spectrum of modes. Such modes may be excited by sources or irregularities in the open
optical fiber waveguides {6]. The continuous spectrum of modes can be derived from the solution of
the Helmholtz equation having oscillatory rather than exponentially decaying character at the large
transverse distance [7]. Thus the radiation mode is a standing wave in the radial direction, and hence it
is expressed as a summation of incoming (incident) and outgoing (reflected) cylindrical waves in the
radial direction in the air region [7].

The mode field. which is the sum of both incident and reflected fields, can be expressed as

i.  Airfields (r=5)

E! =n,etW, (kr,a,)cosng (1-a)

H? =h;’W”(kr,an)sin ng (1-b)
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W, (kr,a, ) = -;{exp I H,(,z)(kr) + expja" H,(,D (k.r):l (Z?a)
An alternative expression for W, (kr,@,,) is given as
W (kr,a,)=J (kr)cosa, - Y, (kr)sina, (2-b)
ii. Corefields (r<a)
Ei=ein.J,(kr)cosng (3-a)
Hi=hJ (kr)sinng (3-b)
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ifi.  Cladding fields (a<r<bh-—>w)
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where (4, &, and 17, are permeability, permittivity, and wave impedance of free space, respectively,

n. and 17, are the core and cladding wave impedances, respectively, # is the mode order, @ is the

angular frequency, 7.¢ and z arc the cylindrical coordinates. e, ./, ,e;. k. C,,C . D; and

Dy are unknowns 10 be determined. J (k) is the Bessel function of first kind, ¥, (k2 r) is the

Bessel function of second kind, H & (kr) is the Hankel function of the first kind, H (" (kr)is the
Hankel function of second kind. k is the radial propagation constant of the radiation mode in air
region, kl and k2 are the radial propagation constants of the radiation modes in the core and cladding

respectively. f is the longitudinal propagation constant of the radiation modes, which can be related
to the radial propagation constants of the different regions through the following relation,

Br=k -k =k ~k =k -k (5)

The bouandary conditions on the core-cladding interface as well as the cladding-air interface are
applied 10 get a linear systen: of eight equations for the unknown coefficients in (1-4). As the equations
are source-frec. the problem of determiming the radiation modes is an eigenvalue problem, where the
values of ¢, corresponding to the different radiation modes are the eigenvalues of the problem. These
cigenvalues can be obtained by setting the system determinant to zero, which leads to the following
expression for the phase shifts of the different radiation modes

. tanf‘{"B’ +yB —44C,
S

6
2 ©

where A,, B, and C,; are defined in appendix A.

The eigenvectors are then obtained by solving the system of equations for ¢ach eigenvalue.
It is clear, from (6), that for each value of 72, there exist two values of ¢, . This implies the existence
of two types of radiation modes: £/ and HE.

2.1.1.  Orthogonality of the radiation modes

The orthogenality between two modes p and ¢ . propagating along an open waveguide can be
expresscd as [8]

[[le, <H,) a,da=0 (7-a)
CS5A

where, ¢ is the cross-sectional area of the waveguide. The cross product integral can be expressed as a
contour integral [8, p417. 418] as follow

if (E,xH,)a.da= Wi—ﬁﬁ (£, H B )+ BUEM,, ~HE, ) rdg

C.¥.4 <
(7-b)

where, £ and S’ are the longitudinal propagation constants of the modes p and ¢ , respectively.

The closed contour, { is divided into separate closed cantours each enclosing a sub-region of infinite
cross section without crossing the interface between any two media of different dielectric constants as

shown in Fig. 1. The integration over the straight paths of the contour, C will vanish since each pair of
these paths are coincident and have opposite directions. Except for the outer circular contour, C, , the
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integration on the other circular contours vanishes due 1o coincidence of opposite paths and continuity
of the field coriponents on the sides of the interfaces.
Using (15-b}, we can arrive at the following expression for the cross-sectional integral,

([, xH,)-a.da=- mee B 2(:) Jeose =) 4y @
C8A 2

where & ,,is the Kronecker deita function and &(k — &'} is the Dirac delta function. Thus the

radiation modes are orthogonal to each other with respect to the mode order as will as the radial
propagation constant. For two modes of the same arder # and radial propagation constant k , referred
previously as EH and HE modes, to be orthogonal, the following equation must be satisfied

eqer’ ROl =0 9

non

Fig. 1 Fiber cross secticn with the contours of each region

It’s evident that a single mode can’t satisfy the above condition, therefore a new set of
orthogonal modes can be constructed such that each mode of this new set is a combination of the
original £f and HF modes of the same order. Thus, a field of a mode belonging to the new set of
modes can be expressed as

M = M (10-a)
M e = Mh? +HM e (10-b)
where A/ he and M “ refer to the original nonorthogonal two modes, A7, and A/, , are the new
orthogonal modes, £ must satisfy the following condition ‘
o] 2
B he” el he”
H=- < z (1)

a hega eh a _he a eh
[h”' hn - ’

te, €y 1cos(anﬂh - anhe )
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Although the modes of the continuous spectrum satisfy the optical fiber boundary conditions,
none of them can actualty be supported alone, since each mode contains an infinite amount of power.
The total radiation field constitute a complete set of modes and can be represented as an integral of the
fietds of radiation modes over the radial propagation constant, which has normally a finite amount of
power.

2.1.2. Normalization of the radiation modes

For the -power content of the radiation mode to be unity, the value of the mode fields must be
divided by a normalization factor. The normalization factors of the two types of radiation modes,
expressed in (10) can be obtained using (7-b), to get

j My ﬁWﬂewl
No oy = | 2105 P rewl (12-2)
c_ne k(} P 3
/' ’TUUEW.MWZ
Nc new2 T, ~ (12-b)
ew k() k 3
where
2 2
¥ new! = |:h:1, e + e:."fhe i| (13'3)

_ «_hep o _eh a he a ¢h eh he a_he” a_hel 2lpa en? a_eht
W oon ~21’9[hn h!-“rel-"e’ ]cos(an -a, )+lh +ef }+B lh +e

n n n

(13-b)

where [ and & are normalized longitudinal and radial propagation constant.

[n general, this set of radiation modes, together with the gnided modes of the optical fiber can be
used to solve longitudinal discontinuity problems along the fiber.

3. Power coupling between two step-index single-mode optical fiber sections
with different refractive indices

In the following, the discontinuity occurring due 10 a joint between two sections of single-mode
optical fiber with different refractive indices is treated using the mode-matching technique. The
dominant mode is assumed to be propagating in the first section optical fiber and incident on the
discontinuity plane. It is required to evaluate the power transferred to the second section of the optical
fiber as well as the power loss due to the discontinuity. The total field in the first section optical fiber
side is expressed as a summation of the incident and reflected guided waves and an integration of the
reflected radiation modes with unknown reflection coefficients over the entire domain of radial
propagation constant. & . The total field in the second section optical fiber is expressed as a summation
of the transmitted guided wave and an integration of the transmitted radiation modes with unknown
transmission coefficients over the entire domain of radial propagation constant, #7 . The reflection and
the transmission coefficients of the different modes are obtained by matching the transverse fields on
both sides of the plane of discontinuity. z = 0. Thus the total transverse fields in the two fiber sections
can be expressed as,

e, = (e_-""lz + Fdejv‘z) €14 +.Z I[Fa, (k,n)e,, (k.n)+T,, (k.n)e,,, (k,n)] e gk
n=0q
(14-a)
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hy = (e_jyjz - rdejyzz)htid - Z _‘.[ra; (k,n)hyg (Kn)+ T, (K.n)hpg,, (k,")] ek
#=00
(14-b)

o %

e, =T,e""%e,, + ZJ‘[TW (m,n)e,, (m.n)+T, (mn)e,, (m, n)] e “dm.  (15-a)

n=0

w ®
h, =T h,,, + Z _”ch (m,m)hzq (m,n) + Ty, (m,n)hy 0, (m,n)] e %dm.
n=0Q
(15-b)
where e, and B, are the transverse electric and magnetic ficlds of the guided mode in the first
section. €, and h; are the transverse electric and magnetic fields of the guided mode in the

second section, €p * (k,m)and h,; o (k,n) are the transverse electric and magnetic fields of the first
type radiatiors mode in the first section, € 2a (m,m)and h,, o {(m, 1} are the transverse electric and

magnetic fields of the first type radiation modes in the second section, €, (hk,n)and h fla, (k,n)
are the transverse electric and magnetic fields of the second type radiation modes in the first section,
€3¢, (m,n)and h 120t {m n} are the transverse eleciric and magnetic fields of the second type
radiation modes in the second section, /7 and k are the radial propagation constants of the radiation
modes in the first and second sections respectively, V,and v, are the longitudinal propagation
constants of the gumded modes of the first and second sections respectively, I',is the reflection
coefficient of the guided mode. T, (k.n) and I, (k.n) are the reflection coefficients of the two

types of radiation modes. T, (m,n)and T, (m,n) are the transmission coefficients of the two types
of radiation modes.

By matching the transverse electric field on both sides of the discontinuity plane, z = 0, the
following equation is obtained:

(l +T, ) e+ Z”I“O,l (k,n) &g (k.n) + T, (R,n) enq, (ic,n)]dk
=00

=T epg+ Z j[Ta] (m,n) &4 (m, 1)+ T, (m,n) ey, (m,n)] dm (16)
#=00

By matching the transverse magnetic field on beth sides of the discontinuity, plane Z =0, the
following equation is obtained:

(=Tt = 3 [ [, ) g, o) + T ) B, ()]l
n=0p

=7, hH+ Zj[Ta, (m,n) hyag, (m,n)+ T, (m,nYhys,, (m,n)]dm (17
n=00p



@ TWENTEITH NATIONAL RADIO SCEINCE CONFERENCE - Bm :
March 18 -20, 2003, CAIRO, Egypt. :

Modes orthogonality can be employed to construct a system of integral equations for the
unknown modes amplitudes find the equations for the unknown mode amplitudes. The modes
orthogonality for the modes of the second optical fiber section is utilized through the following

procedure. First a cross product operation is carried out between (16) and the magnetic fields, h,5 .
hy (M).and k5, (M). Second a cross product operation is carried out between (17) by €54,

€2, (M}, and e,, a (M) . where, M refers 10 certain value of 71 . Then adding and subtracting

each pair, of the six resulting equations, concerned with the same unknown, one gets the following
relations

-

A Iy ® kvt M
dpM)= o +T O +f|Ta®y C +T,k) O |dk (18-a)
tld  t2al nd _r2at g tlal _t2al al.al,
o k k
2@y = Cr +1y C +[[ T C +T,,00 O ldk (18-b)
tld _12d Nd _i2d ¢ tHal _2d o2 _2d
M o0 kit kM
T,wy= (- +T, +f k) O 4T,k O |k (18-c)
d _r2a2 rld a2 0 Hel t2a2 tla2 t2a2
® k k
0= - +I;, C* +||T 0 C* +T ) C* |dk (18-d)
nd _r2d nd_r2d ¢ el _12d tla2 _12d
M M @ Kt s
0= " +I; C° +[|T,0) Cr +T, 0 C* |dk (18-€)
fd_r2al ad _1r2at 7 fal_12al T a2 r2al
M M ® i
o= - +T, C* +|lr, C* +T, k) C+ ldk (18-f)
d_r2a2 Ad _12a2 ¢ Nal a2 a2 12a2
where
C* - H(e:u X Hiog F eyza x hyya ) da (19-a)
td_12d ¢S4
M,—.
C* = J](eridXhrZa(M)ietQa(M)Xhud)'da (19-b)
tid_t2a 584
fcmf
C* = [[lewalt)xhu(m)T e sq(mixh,u(m))-da (19-c)

e _tia (5.4

The quantities in (19) can be evaluated with the aid of the following expression [6],

[, <, %2, xh,) a,da

CSA
LG e, cer i, ba - jale, -e,) [[6F 2, da (20)
K Y LI e 7 Cp Ty KA T A JONEG —&p qa ¢p
PPy CS.4
where the superscripts ., +. and . -. refers to waves propagating in + ve and — ve z- directions

respectively and C is the contour defined in Fig. 1.
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Using (20}, the surface integra! on the left hand side can be expressed as a contour integral and a
surface integral. It should be noticed that due to the factor (E =& ) the term including the surface

integral on the right hand side vanishes for all parts of the cross-sectional area shared between two
regions of the same relative permativity, The contour integral is carried out along the circular path at
infinity as explained before.

It can be shown that. after carrying out the integration in (19-c), the kernel cocfficients take the

following form
km
C+ = _ Jtkm) m) + y(k,m)S (k — m) @)
tlae 2a k-

where. f{k.m) and v(k, m} are functions of both k¥ and m . and can be obtained by carrying out
the surface integration in (19-c)

Due to the existence of the quantity (k - m) in the denominator of (21), the kernel coefficients
in (18-e) and (18-f) are singular where, the singularity occurs due to the presence of two radiation

modes belonging to different fiber sections and having the same propagation constant, i.e. K =m .
Hence. equations {18) constitute a system of singular integral equations

3.1. Solution of the system of singular integral equations

The solution of the unknown reflection and transmission coefficients of (18) can be obtained
through the conversion of the system of the singular integral equations, (18), into a finite system of
linear equations. This is achieved by expanding the unknown transmission and reflection coefficients
of the radiation modes as a series of pulse functions with unknown amplitudes over the domain of

interest, which define the radiation modes: 0 < & < 1. This domain is divided into a namber of sub-
domains such that the singular point, if exists. lies exactly at the middle point of a sub-domain. The
number of the sub-demains is taken large encugh to gel accurate results, Thus the ynknown reflection
and transmission coefficients can be expanded as

B A A W PRPES |
S S g)] e

where. r{; and T; are the unknown weights of the pulse expansion functions of the
. 1.2 1.2

reflection and transmission coefficients, respectively. N is the mumber of sub-domains, and « is the unit

step function. After employing (22}, the obtained linear system of equations can be solved by exact
numerical techniques.

3.2. Power balance

For the sake of verifying the validity of the obtained solutions for the reflected and transmitted
fields. the power balance is vestigated. The power balance requires that the incident power equals the
summation of the reflected and transmitted power. This can be expressed as

P_=P (23-a)

me By

where P is the scattered power. which is defined as

[).s = ‘P:g + Prc + ‘Drc + R‘g (23-b)
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where £, is the power of the dominant mode incident en the plane of discontinuity, P,,g is the power

of the reflected guided mode. P, ¢ 18 the power of the transmitted guided mode, P, is the power of the

reflected radiation modes. and £, is the power of the transmitted radiation modes.

4. Numerical results and discussion

[n this section. the reflection and transmission coefficients for the different modes are calculated.
Alse the coupled power as well as the radiation power due to discontinuity between two optical fiber
sections are evaluated and presented for different values of refractive index of the second fiber section.

It should be noted that the numerical results presented in the following discussion considering
fiber sections with the following parameters unless otherwise indicated, b =125 pm, A =1.3 um,
and Hyy =Ry = 1.4993 .

Fig. 2 shows sample plois for the singular kernels of the singular integral equations (18-e) and
(18-f). 1t’s clear that these singular kernels are almost zero in the entire domain of integration except
for narrow regions around the singuotar points. This means that the discretization operation, carried out
to convert the integrals in (18} to fimute summations as described in section (3.1). will result in a finite
linear system whose matrix is quasi-diagonal. This simplifies and speeds up the numerical process of
solving this systei.

The numericai solution of the obtained linear system of equations gives rise to the valaes of the
reflection and transmission coefficients of the different modes. Considering fiber sections with the
parameters indicated above. this numerical solution results in a very low value of the reflection

coefficient of the guided mode. that is T'; = -0.0432 and a large value of the transmission
coefficient of the guided mode. that is T, = 0.9938 . By using (35-a) and (35-b) the values of the
power transmitted to the second section and that reflected back to the first section are, P,g = {0.9876
and Prg = 0.0019 | respectively. It can be concluded that because of the small difference between

n, and # .. most of the incident power (ransfer to the second section whereas a little a little amount
of the power is reflected back to the first section.

Fig. 3 shows plots for the reflection and the transmission coefficients of the radiation modes as
functions of the radial propagation constant. It’s seen in the figure that the reflection coefficients T,

and ', of the radiation modes have peaks at, & ~ 0.114 . Also the transmission coefficients T,

and 7, of the radiation modes have peaks at. 7 ~ 0.22. The values of the radial propagation
constant at which the reflection or transmission coefficients have peaks identifies the maximum
directions, and can be related 1o the directions of the optical rays in the corresponding fiber section.
According to equations (35-¢) and (35-d), the power carried by the reflected and transmitted
radiation modes are £, = 0.0002 and P, = 0.0042 respectively. According to (34) the scattered

power is P = 0.994  Thus the total power of the scattered field is nearly equal to the power of the

incident mode (unity). which reflects the validity of the applied metheds and the accuracy of the
obtained results.

Other cases considering various values of /1, are shown in Table 1. It's shown in the table that

in the case of matched fiber sections, ie. 1, = h,, the incident power is completely transmitted to
the second fiber section.

Fig. 4 shows a plot for the eptical power coupled to the second fiber section against the
refractive index of the second optical fiber section. n,. ¥'s clear that the incident power is totally
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coupled to the second fiber section when the optical fiber sections have the same values of the

refractive indices. 1t's seen in the figure that as the refractive index of the second fiber section is
deviated from that of the first fiber section the transferred power is significantly decreased.

Fig. 5 shows a plot for the total power lass, which is the summation of the P, P

rg* “re
against #_, - It's clear that no power loss occurs in the case of maiched fiber sections. It’s also seen that

the power loss increases as the refractive index of the second fiber section is deviated from that of the
first fiber section.

and P,

Other case considering fiber sections with core radius a = 5 um, which refers to high frequency
case, and core refractive index 1y =1.502586 is evaluated with various values of 7, in table 2.

Fig. 6 and Fig. 7 shows a plot for the optical power coupled to the second fiber section and the
lotal power loss against the refractive index of the second optical fiber section, n_, . respectively for
the previous case.

nL‘Z P)‘_\_—; P{g P re R’L‘

1.9331 0.001863 0.987607 0.000181 0.004187

1.900028 0.000594 0.995589 0.000165 0.0023255
§4 : :-:-(-‘35"'->.'>.. e i

1.777580 0.000004 0.993064 0.000106 0.0035481

1.749653 0.000267 0.978715 0.000295 0.009905

1.722907 0.0021828 | 0955592 0.028613 0.0005643

1.6974 0.008136 1.920696 0.001008 0.05493736
| 1.5904 (.237842 0.42393 (.008976 0.0977557

Table 1. Power carried by different types of modes for different values of »_,
for a=0.3%9umand n, =1.8368

nc? ‘Dr_g ])Ig Pr'c 13’0
1.5021 Ze-8 0.99964 1.6e-10 3.5e-9
1.5016 Te-8 0.9928 Se-10 1.3e-8
1.501 2e-7 0.964 1.6e-9 1.24e-7
1.5006 2.3e-7 0.85 2.4e-9 5.1e-8

Table 2. Power carried by different types of modes for different values of #_,
for a=5pmand n, =1.502586

5. Conclusion

Employing the complete spectrum of modes of ““= step-index optical fiber, the
application of the mode matching technique on the problen step discontinuity between two
optical fiber sections of different refractive indices leac a system of singular integral
equations. The singular kernels of integral equations are ; t zero for the different values of
the radial propagaiion constant except for very narrow inte around the singular points. This
behavior of singular kernels enables fast and efficient numerical solution of the system of
singular integral equations to get the excitation coefficients of the different modes in the two
fiber sections. The power coupled to the second fiber section as well as the power loss due to the
discontinuity are found 1o be strongly dependent on the difference of the refractive indices of the
two fiber sections. As the refractive indices are more deviated from each other. the transmitted
power is decreased whercas the power loss is increased and vice versa. The power balance is
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investigated where the power of the incident mode is found equal to the summation of the
reflected and radiated power together with that coupled to the second fiber section, which
reflects the validity of the applied method and the accuracy of the obtained results. Optical fiber
sections with quite arbitrary values of core radius are investigated showing that the mode
matching technique as well as the method of solving the system of singular integral equations as
emploved in this paper are completely frequency independent.

Appendix A
The following expressions are definitions for the symbols appearing in equations (13) and (14)
A =Y (kb)A + kY, (kb)Y (kb)B + k*Y,* (kb)C (A-1)
B, = ~2J (kb)Y (kbYA — (J (kb)Y!(kb)+ ]! (kb)Y (kb)WB ~ 2k>J (kb)Y,(kb)C (A-2)
C,=J"(kb)A + kI _(kb).J' (kb)B + k*J*. (kb)C (A-3)
And
A= (o unie, JAan ¥, (oby+ (A, + 4, W, (b)Y, (ub) + 4,02 (D) (A
C=C,+C, +C, (A-5)
5 [ - un, ]Psd +&, KA, Y, (e b)Y [ (h,b) + A, (kb)Y L (kb)) }
k, + (6,4, + £, 4,1, (kDY ! (k) + (£, Ay, + £, A, M. (k,B)Y, (k,B)]
(A-6)

-

C, = [ﬂiﬂm}[ﬂ (b + (Ay, + Ay W (b)Y (hyb) 4+ 4,0 ()] (A7)

-~

Vi
= BB g )=, )R, T, G0 ) - S, (BT )]

VU
# M M () - LY, ()Y, (k801 sb) — 7, (b)Y, (hP)] (a8

C, = nf,V,fUE [7, (kya)s , (k,b) — I (k)Y (kD) [, (kya) Y, (kb)Y — ¥, (Ko@), (ky0) ]

+ I?a'U: [l;anY”? (kZh) + 1\4r15’n']riZ (k:'b} - ‘]n (kZb)Yn (klb)[LnSn +MMRN]] (A-g)
A?.l = T;’d']t? (k’,’a)Vnz 7Lan (A"IO)
AZQ = Man - I?a'Jn(kZa)Vnzyn (kza) (A'll)
Ay = L,S, -0, ka)V,)J, (k,a) (A_12)
Ay, =Y (kaW’ -M,S, (A_13)
V,= nb ]7 - lv (A-14)
a kl~ kZ—
U, =@ %——11— (A-15)
bk, k° .
Ik J (k.
L, =wou  (k,a) AKa) T, k,a) (A-16)
s Lk (ka) ke, (kpa)
J' (& Y (k,
M, = aut, (k)| —212)__ Tata) (A-17)
N kJ (ka) kY, (kya)
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Fig. 2. Sample plots for singular kernel coefficients against the radial
propagation constant
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Fig. 3 Reflection and transmission coefficients of the radiation modes as
functions of the radial propagation constant
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Fig. 4 The power coupled to the second fiber section as a function of »_,at a =039 um
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Fig. 5 The total power loss (reflected and radiated) as a function of n_,at a=0.3% um
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Fig. 6 The power coupled to the second fiber section as a function of n_,at @ =5um
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Fig. 7 The total power loss (reflected and radiated) as a function of n_,at a =5pm



