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Abstract 

In this papei-, the guided modes as well as the radiation modes for step index 
optical fibers are obtained. The problem of scattering of a dominant guided mode in 
an optical fiber section due to a step transition to another fiber section of different 
refractive index is treated rigorously using the mode-matching technique. This 
technique employs the complete spectrum of modes and results in a system of 
singular integral equations. Using a numerical method that accounts for the kernel 
singularities. the system of singular integral equations is converted into a finite system 
of linear equations, which is amenable for exact numerical solution. The radiation 
power due to the discontinuity as well as the power coupled to the second fiber 
section are evaluated. The power balance is verified, where the summation of the 
reflected and radiated power together with that coupled to the second fiber section are 
found equal to the power of the incident mode. 

1. Introduction 
4 significant factor in any optical fiber system installation is the interconnection of fiber 

sections in low-loss manner. Since the optical power that can be coupled from one fiber to another is 
limited by the niiniber of modes that can propagate in each fiber [l], the discontinuity losses in the 
single-mode optical fiber is more dangerous than that of the multi-mode optical fiber. The 
discontinuities along an optical fiber can be classified into three categories. The first is the mechanical 
misalignment. which may be longitudinal, lateral. andlor angular misalignment. The second is the 
geometrical discontinuity which results from the core diameter mismatch. The third is the differences 
in waveglide characteristics sucli as. the nunierical aperture and core refractive-index-profile 
niisinatclies [I]. 

Numerous techniques exist for analyzing optical waveguide systems that have axial 
discontinuities. The methods of analysis of optical waveguide discontinuities can be classified as modal 
and non-modal methods. Non-modal methods of analysis do not employ a modal representation of the 
optical field. One of the non-modal methods is the beam propagation method (BPM). Like the non- 
modal methods of analysis. the standard (BPM) gives only information about the total optical field but 
fails to give ii physical insight of the obtained results. Moreover. this method is only efficient for 
weakly gniding structures presenting small deviation angle and having no polarization dependence. 
Modal methods of analysis are based on the decomposition of the total optical field into local guided 
and radiation modes. thus giving physical insight of the problem in view of the modal components and 
overcoming most of the limitations of the non-modal methods. The mode-matching technique is the 
inost comnioii among the modal methods of analysis used for treating discontinuity problems along the 
optical fibcr. 

Like all dielectric w;ivcguides the optical fiber supports a finite nuniber of guided modes, which 
is snppleniented b? an  iruiiiitc continutmi of unguided radiation modes 121. The electroniagnetic fields 
iii the optical fiber can be completely represented by employing these two sets of modes. The guided 
niodes describe the propagatioii of light along nonabsorbing optical waveguides in region sufficiently 
far froin any source of excitation. where the spatial steady state is reached but the radiation modes 
describe the spatial transient. due to discontinuities, or any other irregularities along the waveguide 131. 
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The guided modes of step-index optical fibers are treated in many publications 141. The radiation 
modes of optical fibers were obtained in [3] considering infinite radius of the cladding. The method of 
characteristic phase shifts [ 5 ]  is employed in the present work to get the radiation modes of the finite 
cladding optical fib er^ The radiation modes are orthogonal to each other with respect to the mode order 
as well as the radial propagation constaut. The two sets of modes (guided and radiation) are also 
onhogonal to each other. 

In the present work. the problem of power coupling between two single-mode optical fiber 
sections with differeut refractive indices is analyzed using the mode-matching technique. The dominant 
guided mode of the first fiber section canying a unity power is assumed incident on the discontinuity 
plane. The fields reflected back to the first section as well as those transmitted to the second fiher 
section are expanded in terms or the complete set of modes of the corresponding fiber section with 
unknown excitation coefficients. The transverse fields are matched on the two sides ofthe discontinuity 
plane resolling i n  a systcin of singular integral equations. A uumerical method that accounts for the 
kernel singularities is used to c o w x t  the system of sin&-lar integral equations into a fiiiite system of 
linear equations. which is amenable for exact uunierical solution. 

The power loss due to the discontinuity as well as the power coupled to the second section are 
evaluated. To veri@ the validity of the oblained results the power balance is investigated, where the 
power loss together with that conpled to the second fiber section should be equal to the power of the 
incident wave. 

2. The Complete set o f  modes o f  the step-index optical fiber 

The complete set of modes of the optical fiber consists of guided modes and radiation modes. 
The guided modes of the step-index optical fiber are treated in many publications [I], [2], [3], [4],. The 
radiation modes can be obtained by using the characteristic phase shifts niethod IS]. 

2.1. Radiation modes of the step-index optical fiber 
The radiation fields i n  Ihe optical fiber surroundings and in the far zone caunot be represented hy 

the guided modes alone. The spectniiu of such an open waveguide should be completed by adding the 
continnous spectnini of modes. Such modes may be excited by sources or irregularities in the open 
optical fiber waveguides [6]. The continuous spectrum of modes can be derived from the solution of 
the Helniholtz equation having oscillatoly rather than exponentially decaying character at the large 
transverse distance 171. Thus the radiation mode is a standing wave in the radial direction. and hence it 
is expressed as a snmuiatioii of incoming (incident) and outgoing (reflected) cylindrical waves in the 
radial direction i n  the air region 171. 

Blo 

The mode field. which is the sum of both incident and reflected fields, can be expressed as 

i. Airfields ( r > h )  
E.: = q , e ~ w " ( k r , a , ) c o s f l ~  

H 4 = h:Wn (kr ,  a,) sin nq5 

f l  Er& 
H,' = -; /?kh:Wn'(kr,a,)+ - - L q i l e : W n ( k r , a , )  - ' I  k -  r 
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q , " ~ W , ( k r , a " ) - ~ ~ ~ W ~ ( k r , a , )  (1-9 

W , , ( k r , a , )  = -[exp-.ian 2 H!,*'(kr)+ expian H; l ) (k . r ) ]  ( 2 - 4  

where 
1 

An alternative evpressioii for W,, (kr ,  a,) is given as 

ii. Core fields ( r  5 n ) 

E," = e : q J , ( k , r ) c o s n @  
Hf = h;./,(klr)sinn4 

iii. Cladding fields ( a  s r s h 4 m ) 

E: = q d  [c, -I, (k? r ) +c,Y,2 (k* r ) ] cos  n4 

H,d = [I-),J,, (k,r)+D,,Y, (k2r)]sin n4 

( 4 - 4  

(44 )  

(4-e)  
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where f l ,  &<, and 17, are permeability, permittivity, and wave impedance of free space? respectively, 

17, and qd are the core and cladding wave impedances, respectively, n is the mode order, m is the 

angular frequency. r .  y5 and z are the cylindrical coordinates. e,“ , h,” ,e,’, h,’ , c j ,  c, , D j  and 

Dls are unknowns to be determined, J,, ( k , r )  is the Bessel function of first kind, Y,, (k,u) is the 

Bessel functiou of second kind, H:,’)(kr) is the Hankel function of the first kind, Hr’(kr)  is the 

Hankel hmctioii of second k i d  k is the radial propagation constant of the radiation mode in air 
region. k, and kz are the radial propagation constants of the radiation modes in the core and cladding 

respectively. is thc longitudinal propagation constant of the radiation modes, which can be related 
to the radial propagation constants of the different regions through the following relation, 

( 5 )  

The boundaly conditions on the core-cladding interface as well as the cladding-air interface are 
applied to get a linear system of eight equations for the unknown coefficients in (1-4). As the equations 
are source-Cree. the problein of deterininiug the radiation modes is an eigenvalue problem, where the 
values of a,) corresponding to the diffcrent radiation modes are the eigenvalues of the problem. These 
eigenvalues can  he obtaiued by setting the system determinant to zero: which leads to the following 
expression for the phase shifts of the different radiation inodes 

p’ = k ’  - k 7  = k ?  d - k Z  = k i - k 2  
C I  

I-.! 4 G ]  (6) 

a“ = “n-ll 2 4  

where A,,  B ,  and c, are defined in appendix A 

The eigenvectors are rheu obtained by solving the system of equations for each eigenvalue. 
It is clear. from (6). that for each value of n , there exist two values of a,. This implies the existence 
of two types of radiation modes: EH and HE. 

2.1.1. Orthogonality of the radiation modes 

Thc orthogonalit), bct\veen two modes p and y . propagating along an open waveguide can be 
expressed as [ X I  

where. n is the cross-sectional area of the waveguide. The cross product integral can be expressed as a 
contour integral 18. p417. 41x1 a s  follow 

where. p aud p’ are the lougitudiiial propagation constants of the modes p and y , respectively. 

The closed contour, c is divided into separate closed contours each enclosing a sub-region of infnite 
cross section without crossing the interface between any two media of different dielectric constants as 
shown in Fig. 1, The integration over the straight paths of the contour, C will vanish since each pair of 
these paths are coincident and have opposite directions. Except for the outer circular contour, c, , the 
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integration on the other circular contours vanishes due to coincidence of opposite paths and continuity 
of the field components on the sides of the interfaces. 

Using (15-b). we can arrive at the following expression for the cross-sectional integral, 

where 6,, is the Kronecker della function and 6 ( k  - k') is the Dirac delta function. Thus the 

radiation inodes are orthogonal to each other with respect to the mode order as will as the radial 
propagation constant. For two modes of the Same order n and radial propagation constant k , referred 
previously as EH and HE modes, to be orthogonal. the following equatinn must be satisfied 

(9) 
il I O  + h, h,, = 0 

Fig. I Fiber cross section with the contours of each region 

It's evident that a single mode can't satisfj the above condition. therefore a new set of 
orthogonal modes can be constructed such that each mode of this new set is a combination of the 
original EH and HE modes or the same order. Tlms, a field of a mode belonging to the new set of 
modes can be expressed as 

eh where M'" and h' 
orthogonal modes. E) must satisfy the following condition 

refer to the original nonorthogonal two modes, MoeWl and M,,,, are thenew 
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Although the modes of the continuous spectrum satisfy the optical fiber boundary conditions, 
none of them can actually be supported alone. since each mode contains an infinite amount of power. 
The total radiation field constitute a complete set of modes and can be represented as an integral ofthe 
fields of radiation modes over the radial propagation constant, which has normally a finite amonnt of 
power. 

2.1.2. Normalization of the radiation modes 
For the .power content of the radiation mode to be unity, the value of the mode fields must be 

divided by a normalization factor. The normalization factors of the two types of radiation modes, 
expressed in (IO) caii be obtained using (7-b), to get 

where 

(1 2-a) 

(1 2-b) 

I Yne,z = 2 ~ ) [ h ; . h @ h " . . e h  + e ; ~  hee;-eh]COs(a ,ah a,he) + b ; . h a ' I  + e,".he2 ] + L ) 2  b ; - e h '  

(13-b) - - 
where P and k are nornialized longitudinal and radial propagation constant. 

used to solve longitudinal discontinuity problems along the fiber. 

3. Power coupling between two step-index single-mode optical fiber sections 
with different refractive indices 

In general. this set of radiation modes, together with the guided modes of the optical fiber can be 

In the following. the discontinuity occurring due to a joint between two sections of single-mode 
optical fiber with difkrent refractive indices is treated using the mode-matching technique. The 
donlinant mode is assumed to be propagating in the first section optical fiber and incident on the 
discontinuity plane. I t  is required to evaluate the power transferred to the second section of the optical 
fiber as well as the power loss due to the discontinuity. The total field in the first section optical fiber 
side is expressed as a summation of the incident and reflected guided waves and an integration of the 
reflected radiation modes with unknown reflection coefficients over the entire domain of radial 
propagation constant. k . The total field in the second section optical fiber is expressed as a summation 
of the transmitted guided wave and an  integration of the transmitted radiation modes with unknown 
transmission coefficients over the entire domain of radial propagation constant. m . The reflection and 
the transmission coefficients of the different inodes are obtained by matching the transverse fields on 
both sides of the plane of discontinuity. 2 = 0. Thus the total transverse fields in the two fiber sections 
can be expressed as, 

m m  

, 1 = 0  () 

e,, = (e-.ir'iz + l-de,i!'iz)el,d + ~ ~ [ r , , ( k , n ) e , , u l ( k , n ) + T , i ( k , n ) e , , , ~ ( k . ~ ) ] e ' ~ ~ ~ .  

( 14-a) 
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( 1  4-b) 

(15-a) 
w> s, 

e,2 = Tde-1v2'e,2, + 1 1 [ T q  (m,n)e , ,a l  ( m , n ) + T , ( m , n ) e , , = 2 ( m , n ) ] e - ' ~ i d m .  
"=(I /I 

" "  
h12 = Tde--jvz'hl2d + zjh, (m,fl)hlzgl ( m , n )  + Ta2(m,n)h,2,, h n )  ] e -"dm 

n=O0 

(15-b) 

where eI ld  and h, , ,  are the transverse electric and magnetic fields of the guided mode in the first 

section. e,?d and hr2d are the transverse electric and magnetic fields of the guided mode in the 

second section, e,,a, ( k ,  n )  and hrla, ( k ,  11) are the transverse electric and magnetic fields of the first 

type radidtioll mode i n  tlie first scclion, e+ (m, n) and ht2 (m, n) are the transverse electric and 

magnetic fields of the first type radiation modes in the second section, ella* ( k ,  n) and h,la2 ( k ,  n )  
are the transverse elcctric and magnetic fields of the second type radiation modes in the first section, 
e,2g, (m. ? I )  and hrIu? (n?, n) are the transverse electric and magnetic fields of the second type 

radiation modes in the second section, m and k are the radial propagation constants of the radiation 
modes in tlie first and second sections respectively, vI and v2 are the longitudinal propagation 

constants of the guided modes of the first and second sections respectively, rd is the reflection 

coefficient of the guided mode. $,, ( k , n )  and Fez ( k ,  n )  are the reflection coefficients of the two 

hpes of radiation modes. 71, (???,PI) and T,L: ( m , n )  are the transinissioii coefficients of the two types 
of radiation modes. 

a1 

- - 

By matching the transverse electric field on both sides of the discontinuity plane, z = 0, the 
following eqnation is obtained: 

m w  

(l+rd)elld + ~ ~ [ r , , ( k , n )  e,Ial(k,n)+ra2(k,n) e,l,2(k,n)1dk 
,z=OO 

a "  

= ~ d  e t ? d +  ~ I [ ~ , ~ ( n i , n ) e , , , ~ i M , W ) + ~ , ~ ( m , w )  e,2,*(m,n)]dm (16) 
n = O O  

By n~atching the transverse magnetic field on both sides of the discontinuity, plane Z = 0. the 
following eqilation is obtained: 

" 

( l - r d ) h ~ l d  ~ j [ r a l ( k ~ n )  h, la l (k ,n)+ra2(k,n)  h,lm2(k,n)]dk 

m "  
= h,2d + z / [ T a l ( M , n )  h r ~ a l ( m , n ) + ? , ~ ( n i , n ) h , ~ a , ( m , n ) ] d m  (17) 

,,=U0 
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I 

Modes orthogonality can be employed to construct a system of integral equations for the 
unknown modes amplitudes find the equations for the unknown mode amplitudes. The modes 
orthogonality for the modes of the second optical'fiber section is utilized through the following 
procedure. First a cross product operation is carried out between (16) and the magnetic fields: h 1 2 d .  

h12a, ( M )  . and hrZa, ( M )  . Second a cross product operation is carried out between (17) by e , 2 d ,  

eIZal ( M )  . aud ella, ( M )  . where, M refers to certain value of rn . Then adding and subtracting 

each pair. of the six resulting equations, concerued with the same unknown, one gets the,following 
relations 

(1 8-a) 

(1 8-b) 

(1 8-C) 

(1 8-d) 

(18-e) 

(18-0 

( 19-a) 

( 19-b) 

( 1 9-C) 

(20) 

where the superscripts . +. and . -. refers to waves propagating in + ve aiid - ve z- directions 
respectively aud C is the contour defined in Fig. 1. 
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Using (20). the surface iiitegral on the left hand side can be expressed as a contour integral and a 
surface integral. lt should be noticed that due to the factor (s, - &,). the term including the surface 
integral on the right liand side vanishes fur all parts of the cross-sectional area shared between two 
regions of the same relative perniativity. The cotitour integral is camed out along the circular path at  
infinity as explained before. 

It can be shown that. &er carrying out the integration in (l9-c)> the kernel coefficients lake the 
following form 

kn, 
C' = f ( k , + y ( k , m ) 6 ( k - m )  

k - m  rla ~ t2a 

where. . f ( k . n 7 )  and y ( k , m )  are functions of both k and m , and can  be obtained by carrying out 
the surface integration in (19-c) 

Due to thc existence of the quantity (k - m) in the denominator of (21), the kernel coefficients 
in (18-e) aitd (18-0 are singular where, the singularity occurs due to the presence of two radiation 
modes belonging to different fiber sections and having the same propagation constant, i.e. k = m 
Hence. equations (18) constitute a system of singular integral equatious 

3.1. Solution o f  the system of  singular integral equations 
The solution of the unkuown reflection and transmission coefficieuts of (18) can be obtained 

through the conversion of the system of the singular integral equations, ( IQ,  into a finite system or 
linear equations. This is achieved by expanding the unknown transmission and reflection coefficients 
of the radiation modes as a series of pulse functions with unknown amplitudes over the domain of 
interest. which define the radiation modes: 0 C k 5 1. This domain is divided into a number of snb- 
domains such that the singular point. if exists. lies esactlp at the middle point of a sub-domain. The 
number of the sub-domains is taken large enough to get accurate results. Thus the unknown reflection 
and traiisiiiissiou coefficients can be expanded as 

- 

(22-a) 

(22-b) 

where. I-' aud T i  are the uilkiiown weights of the pulse expansion functions of the 

reflection and transmission coefficients_ respectively, N is the number of sub-domains, and U is the unit 
step functiou After eniploying (22), the obtained linear system of equations can be solved by exact 
numerical techniques 

3.2. Power balance 

al.2 al.? 

For the sake of verifiing tlic validity of the obtained solutions for the reflected and transmitted 
fields. the power balance is investigated The powcr balance requires that the incident power equals the 
sumniatioll of the reflected aitd transmitted power. This can be expressed as 

q,, = p,  (23-a) 

(23-b) 
where p,  is the scattered power. which is defined as 

?, = Prs + P,~c + p, + P!, 
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where is the power of the doniiuant mode incident on the plane of discontinuity. P,x is the power 

of the reflected guided mode. P, is the power of the transmitted guided mode; P,c is the power of the 

reflected radiation modes. and P,, is the power of the transmitted radiation modes 

4. Numerical results and discussion 
In this section. the reflection and transmission coefficients for the different modes are calculated. 

Also the coupled power as well as the radiation power due to discontinuity between two optical fiber 
sections are evaluated and presented for different values of refractive index of the second fiber section. 

It should be noted that tlie nunierical results presented in the following discussion considering 
fiber sections with the followiiig parameters unless otherwise indicated, b = 125 p n ,  A = 1.3 w, 
and n d l  = nd2 = 1 4993 

Fig. 2 shows sample plots for the singular kernels of the singular integral equations (18-e) and 
(18-0. It's clear that these singular kernels are almost zero in the entire doniain of integration except 
for narrow regiolis around the singular points. This means that the discretization operation, carried out 
to convert the integrals in (18) to finite summations as described in section (3. I) .  will result in a finite 
linear system whose matrix is quasi-diagonal. This simplifies and speeds up the numerical process of 
solving this system. 

The numerical solution of the obtained linear system of equations gives rise to the values of the 
reflection and transmission coefficients of the different modes. Considering fiber sections with the 
parameters indicated above. this numerical solution results in a very low value of the reflection 
coefficient of the guided mode. that is rd = -0.0432 and a large value of the transmission 

coefficient of the guided mode. that is Td = 0.9938. By using (354) and (35-b) the values of the 

power transmitted to the second section and that reflected back to the first section are. Prg = 0 . 9 8 7 6  

and = 0.001 9 .  respectively. It can be concluded that because of the small difference between 

nc, and nc2 .  most of the incident power transfer to the second section whereas a little a little aniounl 
of the power is reflected back to the first section. 

Fig. 3 shows plots for the reflection and the transmission coefficients of the radiation modes as 
functions of the radial propagation constant. It's seen in the figure that the reflection coeficients r,, 
and rm2 of the radiation modes have peaks at, k 0.114. Also the transmission coefficients Tml 

and m, of the radiation modes have peaks at. = 0 . 2 2 .  The values of the radial propagation 
constant at which the reflection or transmission coefficients have peaks identifies the maximum 
directions, and can be related to the directions of the optical rays in the corresponding fiber section. 

According to equations (35-c) and (35-d). the power carried by the reflected and transmitted 
radiation modes are P,' = 0 . 0 0 0 2  and P,, = 0.0042 respectively. According to (34) the scattered 

power is p, = 0 . 9 9 4 .  Thus the total power of the scattered field is nearly equal to the power of the 
incident mode (unity). which reflects the validity of the applied methods and the accuracy of the 
obtained results. 

- 

Other cases considering various values of nG2 are shown in Table 1. It's shown in the table that 

in the case of matched fiber sections, i.e. n,, = n c 7 ,  the incident power is completely transmitted to 
the second fiber section. 

Fig. 4 shows a plot for tlie optical power coupled to tlie second fiber section against the 
refractive index of the second optical fiber section. n c 2 .  It's clear that the incident power is totallv 
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coupled to the second fiber section when the optical fiber sections have the same values of the 
refractive indices. It's seeu in the figure that as the refractive index of the second fiber section is 
deviated from that of the first fiber section the transferred power is significantly decreased. 

Fig. 5 shows a plot for the total power loss, which is the sumniation of the P, , P,c, and P,, 

against n C z .  It 's clear the1 no power loss occurs in the case of matched fiber sections. It's also seen that 
the power loss increases as the refractive index of the second fiber section is deviated from that of the 
first fiber section. 

Other case consideriug fiber sections with core radius a = 5 vm, which refers to high frequency 
case. and core refractive index n,, = 1.502586 is evaluated with various values of nc2 in table 2.  

Fig. 6 and Fig. 7 shows a plot for tlie optical power coupled to the second fiber section and the 
tolal power loss against the refractive index of tlie second optical fiber section, nc2 , respectively for 
the nrevioiis case 

Table 1. Power carried by different types of modes for different values of ncz 

for n = 0.39 pin and n,, = 1.8368 

, I , 
1.5021 1 2e-8 1 0.99964 1 1.6e-10 1 3.5e-9 

Table 2. Power carried by different types of modes for different values of nc2 
for n = 5 pin and n,, = 1.502586 

5. Conclusion 
Einployiug the complete spectrum of modes of 'I1- step-index optical fiber, the 

application of the mode matching techuique on the problen step discontinuity between two 
optical fiber sections of different refractive indices leac a system of singular integral 
equations. The singular kernels of integral equations are i t zero for the different values of 
the radial propagation constant except for very ndrrow inte around the singular points. This 
behavior of singular kernels euables fast and efficient numerical solution of the system of 
singular integr;ll equations 10 get the excitation coefficients of the different modes in the two 
fiber sections. The power coupled to the second fiber section as well as the power loss due to the 
discontinuity are found to be strougly depeudent on the difference of the refractive indices of the 
two fiber sections. As the refractive indices are more deviated from each other, the transmitted 
power is decreased whereas the power loss is increased and vice versa. The power balance is 
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investigated where the power of the iucident mode is found equal to the summation of the 
reflected and radiated power together with that coupled to the second fiber section, which 
reflects the validity of the applied method and the accuracy of the obtained results. Optical fiber 
sectious with quite arbitrary values of core radius are investigated showing that the mode 
matching technique as well as the method of solving the system of siugular integral equations as 
employed in this paper are completely frequency independent, 

Appendix A 

The following expressioiis are defiuitions for the symbols appearing in equations (13) and (14) 

(A-14) 

(A-15) 

(A-16) 

(A-17) 



I B i o ~  I 13 
TWENTEITH NATIONAL RADIO SCEINCE CONFERENCE 

March 18 -20,2003, CAIRO, Egypt. 

k 

References 

[ I ]  G. Keiser, "Optical Fiber Communications". McCraw-Hill Inc., London, 1974. 
[2] D. Marcuse. "Theory of Dielectric Optical Waveguides". Academic Press, New 

York and London. 1974 
131 A. W. Snyder and 1. D. Love. "Optical Waveguide Theory". The Institute of 

Advanced Studies, Australian National University, Canberra. Australis 1983 
141 D. Marcuse. "Light Transmission Optics". Van Nostrand Reinhold Company, 

Bell Telephone Laboratories. New York, 19x2 
[ _  Sozzi and M Mongirado. "Open Electromagnetic Waveguides", The lnstitute 

'-ical Engineers. London. United kingdom. 1997. 
161 E. L~ iiwany. "Leaky Waves Antenna". M.Sc. Thesis. AI-Azhar University. 

Faculty of Engineering. 1980. 
171 K. Hussein. %adiation and Scattering of Electroniagnetic Waves from 

Longitudinal Slot or Strip on Coaxial Structure": Ph.D Thesis, Cairo University, 
Faculg of Engineering. 2000. 

[SI R. Collin. '-Field Theor?. or Guided Waves". Edition 2, IEEE Press, New York, 
1990. 

(A-18) 

(A-19) 

(A-20) 

(A-21) 

(A-22) 

(A-23) 

(A-24) 

(A-25) 

(A-26) 

(A-27) 



IBio 1 14 1 e TWENTEITH NATIONAL RADIO SCEINCE CONFERENCE 
- March 18 -20,2003, CAIRO, Egypt. 

2oo 

0 

-200 

-400 

-600 

/ l U 2 ~ l 2 U ?  

" - 1 

k 
-- 
-- 
- 

(a) m = 0.2 

k U 4  I 500- C+ 
0 

-500 -- 
-' , 

3 / 0 4  k 

I 
-1000 -- I 

-1 500 - 
(b) m = 0 4 

500 

0 

-500 

-1000 

-1 500 1 

(b) m = 0.4 

-300 1 

(c) nz = 0.6 
r 

-300 1 

(d) m = 0.8 

Fig. 2. Sample plots for singular kernel coefficients against the radial 
propagation constant 
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Fig. 3 Reflection and transmission coefficients of the radiation modes as 
functions of the radial propagation constant 



e TWENTEITH NATIONAL RADIO SCEINCE CONFERENCE B 
March 18 -20, 2003, CAIRO, Egypt. 

".U" I 

1.6974 1.7229065 1.749653 1.7775801 1.8368 1.9000283 1.9331 

Fig. 4 The power coupled to the second fiber section as a function of n,,at a = 0.39 pm 
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Fig. 5 The total power loss (reflected and radiated) as a function of ncz at a = 0.39 pm 
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Fig. 6 The power coupled to the second fiber section as a hnction of n,,at a = 5 pm 
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Fig. 7 The total power loss (reflected and radiated) as a function of nc2 at a = 5 pm 


