

Optiwave Systems Inc. Phone: 1.613.224.4700 Fax: 1.613.224.4706 info@optiwave.com

Measured-Index Multimode Fiber

This component is a general-purpose multimode fiber with user-defined or alpha profile refractive index profile. It is a spatially dependent component that models the transverse field profiles and propagation constants for each mode supported by the fiber.

Ports

0

Name and description	Port type	Signal type	Supported Modes
Input	Input	Optical	Sampled signals
Output	Output	Optical	

Parameters

Main

Name and description	Default value	Default unit	Units	Value range
Length Defines the fiber length	1	km	m, km	[0, 100000]
Attenuation Defines the fiber attenuation	2.61	dB/km		[0, 1e+101]

Fiber Profile

Name and description	Default value	Default unit	Units	Value range
Reference wavelength (profile)	850	nm		[100, 2000]

Refractive index profile Defines whether to calculate the fiber profile based on the alpha setting or measured data	Alpha profile		[Alpha profile, Measured]
OptiFiber file format Defines whether to load a file generated by OptiFiber or not	NO		[YES, NO]
Filename The filename with the refractive index profile	Index.txt		
Core radius Defines the fiber core radius	25	um	[1, 100]
Cladding thickness Defines the thickness of the cladding	10	um	[1, 10000]
Refractive index peak The peak value of the refractive index for the profile	1.462		[1, 2]
Use index contrast Determines whether to use the index contrast or the cladding index	NO		[YES, NO]
Refractive index cladding The filename with the refractive index profile	Index.txt		
Refractive index contrast The delta parameter of the refractive index for the profile	1	%	[0.01, 10]
Alpha The alpha parameter for the index profile	2		[1, 1e10]
Number of radial steps The number of steps for the refractive index profile	1000		[10, 10000]

Material Properties

Name and description	Default value	Default unit	Units	Value range
Include material properties Defines whether material properties are take into consideration in the delay calculationt	NO			[YES, NO]
Host material Defines the fiber host material	Pure silica			Pure silica, 1.0% fluoride- doped silica,

Host filename	HostIndex.txt		3.0% B2O3-doped silica, 3.1% germania- doped silica, 9.1% P2O5-doped silica, Pure fused GeO2, Pure P2O5, Pure silica, ZBLAN
Defines the fiber material that has higher index due to an index-rising dopant.	3.1% germania- doped silica		Pure silica, 1.0% fluoride- doped silica, 3.0% B2O3-doped silica, 3.1% germania- doped silica, 9.1% P2O5-doped silica, Pure fused GeO2, Pure P2O5, Pure silica, ZBLAN
Dopant+ filename File containing the Sellmeier coefficients	DopantIndex.txt		
Dopant- material Defines the fiber material that has lower index due to an index decreasing dopant.	1.0% fluoride-doped silica		Pure silica, 1.0% fluoride- doped silica, 3.0% B2O3-doped silica, 3.1% germania- doped silica, 9.1% P2O5-doped silica, Pure fused GeO2, Pure P2O5, Pure silica, ZBLAN
Dopant- filename File containing the Sellmeier coefficients	DopantIndex.txt		

Chromatic Dispersion

Name and description	Default value	Default unit	Units	Value range
Include chromatic dispersion	NO			[YES, NO]
Defines whether chromatic dispersion effects are included or not				
Reference wavelength	820	nm		[100, 2000]
Dispersion and dispersion slope are provided at this reference wavelength				
Use Sellmeier approximations	YES			[YES, NO]
Defines whether Sellmeier approximations are used or not				
Zero dispersion wavelength	1354	nm		[100, 2000]
The wavelength where the dispersion is zero. The zero dispersion slope is also provided at this wavelength.				
Zero dispersion slope The dispersion slope at the zero dispersion wavelength	0.097	ps/ ^ (nm [^] 2.km)		[-1e+100, 1e+100]
Dispersion Dispersion at the reference wavelength	-100	ps/(nm.km)		[-1e+100, 1e+100]
Dispersion slope Dispersion slope at the reference wavelength	0.5	ps/ (nm^2.km)		[-1e+100, 1e+100]

Numerical

Name and description	Default value	Default unit	Units	Value range
User defined wavelength	NO			[YES, NO]
Defines whether to calculate the mode solver at a user defined wavelength or not				
Solver wavelength	820	nm		[100, 2000]
Mode solver is calculated at this wavelength				
Modal attenuation	NO			[YES, NO]
Defines whether to load a file with modal attenuations or no				
Attenuation filename	Attenuation.dat			
The filename with the refractive index profile				

Relative delay	YES		[YES, NO]
Defines whether the differential mode delay is absolute or relative			
Const. mode power dist.	NO		[YES, NO]
Defines whether to generate a constant mode power distribution (MDP) or not			
Modal delay Defines whether to calculate the differential mode delay using Wentzel-Kramers-Brillouin (WKB) or not	Effective index diff.*		[Effective index diff., Wentzel-Kramers-Brillouin, Variation principle]
LP(m,n) max.	20, 10		[0, 1000]
The maximum LP mode index value when the mode solver is searching for modes			
Min. signal power	-100	dBm	[-1e+100, 0]
The minimum signal power for a given mode. Modes will not be attached to signals with power lower than this value.			
Mode solver	LP		LP, OptiFiber
Solver tolerance	1e-014		[1e-100, 0.1]
Solver step size	1.5e-005		[1e-100, 1]
Solver sample rate	25	1/um	[10, 1000]
Generate overfilled launch	NO		[YES, NO]
Defines whether to generate an overfilled fiber launch or not			
Generate report	YES		[YES, NO]
Defines whether to generate a report with the attributes of the fiber			
Report			
The summary of fiber attributes, including number of modes, coupling coefficients and delays			

Graphs

Name and description	Default value	Default unit	Units	Value range
Calculate graphs Defines whether to calculate graphs or not during simulation	NO			[YES, NO]

Calculate graphs on OK Defines whether to calculate graphs after clicking on the component properties OK button	NO			[YES, NO]
Format Defines whether to calculate the graphs using rectangular or polar format	Power Phase			[Power Phase, Real Imag]
Wavelength The reference wavelength for the graphs	820	nm		[100, 2000]
LP(m,n) The LP mode index for the individual radial and mode profile graphs	0, 1			[0, 1000]
Radial graphs Defines whether to calculate the radial graphs	YES			[YES, NO]
Mode number graphs Defines whether to calculate the mode number graphs	YES			[YES, NO]
Spatial profile graphs Defines whether to calculate the spatial profile graphs	NO			[YES, NO]
Spatial overfilled graphs Defines whether to calculate the spatial overfilled graphs	NO			[YES, NO]
Fiber bandwidth cut-off Defines the point at which to calculate the fiber bandwidth- distance product (MHz-km)	3	dB	dB	[0, 100]

Simulation

Name and description	Default value	Default unit	Units	Value range
Enabled	YES			[YES, NO]
Determines whether or not the component is enabled				

Graphs

Name and description	X Title	Y Title Refractive index Refractive index m	
Refractive index profile (reference wavelength)	Radius (m)		
Refractive index profile (test wavelength)	Radius (m)		
LP[m,n] index array - m	Mode number		

LP[m,n] index array - n	Mode number n			
Group delay	Mode number Group delay (ps/km)			
Group delay relative	Mode number Group delay relative (ps/km			
Effective index	Mode number	Effective index		
Fiber transfer function	Frequency (GHz) Abs (Transfer function) (d			
Radial profile - individual a	Radius (m) Intensity			
Radial profile - individual b	Radius (m) Phase (rad)			
Spatial profile - individual a	X (m) Y (m)			
Spatial profile - individual b	X (m) Y (m)			
Spatial profile - overfilled a	X (m) Y (m)			
Spatial profile - overfilled b	X (m) Y (m)			
Modal power distribution	Mode number	Power coupling		

Results

Name and description	Units
	01110
Highest index in profile @ reference wavelength	
Lowest index in profile @ reference wavelength	
Refractive index contrast @ reference wavelength	%
Highest index in profile @ solver wavelength	
Lowest index in profile @ solver wavelength	
Refractive index contrast @ solver wavelength	%
Refractive index: Base (solver wavelength)	
Refractive index: Dopant+ (solver wavelength)	

Refractive index: Dopant- (solver wavelength)	
Sellmeier amplitude A(1) - Base	
Sellmeier resonance L(1) - Base	micron
Sellmeier amplitude A(2) - Base	
Sellmeier resonance L(2) - Base	micron
Sellmeier amplitude A(3) - Base	
Sellmeier resonance L(3) - Base	micron
Sellmeier amplitude A(1) - Dopant+	
Sellmeier resonance L(1) - Dopant+	micron
Sellmeier amplitude A(2) - Dopant+	
Sellmeier resonance L(2) - Dopant+	micron
Sellmeier amplitude A(3) - Dopant+	
Sellmeier resonance L(3) - Dopant+	micron
Sellmeier amplitude A(1) - Dopant-	
Sellmeier resonance L(1) - Dopant-	micron
Sellmeier amplitude A(2) - Dopant-	
Sellmeier resonance L(2) - Dopant-	micron
Sellmeier amplitude A(3) - Dopant-	
Sellmeier resonance L(3) - Dopant-	micron
Sellmeier amplitude A(1) - Dopant-	
Bandwidth	MHz-km

Technical background

This component is a general-purpose multimode fiber with a user-defined or alpha

profile index. The user should provide the fiber refractive index as an input file.

The main result of the fiber calculation is the spatial profile, coupling coefficients and the time delay for each mode. The final solution for the output field of the combined temporal and spatial properties of the fiber for *N* number of modes is:

$$E_{out}(r,\phi,t) = \sum_{i=1}^{N} [c_i E_{in}(t-\tau_i)] E_i(r,\phi)$$
(1)

where E_{in} is the signal input field, c_i is the coupling coefficient between the fiber modes and the spatial profile if the input field and E_i is the fiber mode for each index *i*. If the power of $(c_i E_{in})$ is below the parameter *Min. signal power*, the signal *i* is discarded.

The component has a numerical mode solver that will calculate the LP(m,n) modes and the propagation constants. The parameter LP(m,n) max. defines the maximum order for the radial and azimuthal indexes *m* and *n* when searching for fiber modes. The signal center frequency for the mode solver depends on the center frequency of the input signal. The user can force the mode solver to work at a user defined wavelength by enabling parameter User defined wavelength.

The parameter *OptiFiber file format* defined whether the refractive index file was generated by Optiwave OptiFiber[2] (or *Fiber_CAD*) software tool. The refractive index file format is a list with the radial position from the center of the fiber to the clad, and the real value of the refractive index. The radial position should be provided in microns:

Figure 1 File with fiber profile, radius (first column) should be given in microns

2.500000e-001	1.414200e+000
5.000000e-001	1.414197e+000
7.500000e-001	1.414191e+000
1.000000e+000	1.414183e+000
1.250000e+000	1.414171e+000
1.500000e+000	1.414157e+000
1.750000e+000	1.414140e+000
2.000000e+000	1.414120e+000
2.250000e+000	1.414098e+000
2.500000e+000	1.414072e+000
2.750000e+000	1.414044e+000
3.000000e+000	1.414013e+000
3.250000e+000	1.413979e+000
3.500000e+000	1.413942e+000
3.750000e+000	1.413903e+000
4.000000e+000	1.413860e+000
4.250000e+000	1.413815e+000
4.500000e+000	1.413767e+000
4.750000e+000	1.413716e+000
5.000000e+000	1.413662e+000

IMPORTANT: the first radial position should be different from zero.

If the OptiFiber format is enabled, the file should also include the header and the number of radial points (Figure 2).

Figure 2 File with fiber profile using OptiFiber format, radius (first column) should be given in microns

FIBERCAD	
101	
2.500000e-001	1.414200e+000
5.000000e-001	1.414197e+000
7.500000e-001	1.414191e+000
1.000000e+000	1.414183e+000
1.250000e+000	1.414171e+000
1.500000e+000	1.414157e+000
1.750000e+000	1.414140e+000
2.000000e+000	1.414120e+000
2.250000e+000	1.414098e+000
2.500000e+000	1.414072e+000
2.750000e+000	1.414044e+000
3.000000e+000	1.414013e+000
3.250000e+000	1.413979e+000
3.500000e+000	1.413942e+000
3.750000e+000	1.413903e+000
4.000000e+000	1.413860e+000
4.250000e+000	1.413815e+000
4.500000e+000	1.413767e+000
4.750000e+000	1.413716e+000
5.000000e+000	1.413662e+000

There are two main results of this calculation, the time delay associated with each mode, and the coupling coefficient between the input spatial fields and each of the spatial fiber modes. Additionally, the user can provide a file with the modal attenuation. The modal attenuation file format is a list with the *m* and *n* mode index and the attenuation in dB/km for polarizations X and Y:

Figure 3 Modal attenuation file

0	1	0	0
0	2	500000	500000
1	1	2000	2000
-1	1	2000	2000

For illustration purposes, in the file above, 4 modes will be attenuated: $LP_{0,1}$,

 $LP_{0,2}$, and $LP_{-1,1}$. The first mode will be attenuated by 0 dB/km for both polarizations. The next mode will be attenuated by 500000 dB/Km. The remaining two modes will be attenuated by 2000 dB/km.

The propagation constant β is used to calculate the time delay per mode. There are three options to calculate the delay. The first option uses the Wentzel-Kramers-Brillouin method:

$$\tau_{m,n} = \frac{Ln_1}{2c} \left(\frac{n_1}{N_{eff_{m,n}}} - \frac{N_{eff_{m,n}}}{n_1} \right)$$

$$N_{eff_{m,n}} = \frac{\beta_{m,n}}{k_0}$$

$$k = \frac{2\pi}{\lambda_0}$$
(2)

where n_1 is the peak value of the refractive index, *L* is the fiber length, *c* is the speed of

light and $^{\mathbf{\lambda}_{0}}$ is the center wavelength.

The second method is to apply the derivative of the effective index directly to calculate the delay:

$$\tau_{mn} = \frac{L}{c} \left(N_{eff_{mn}} - \lambda_0 \frac{dN_{ff_{mn}}}{d\lambda_0} \right) \quad (3)$$

The derivative method includes the material dispersion in the calculation if the material properties field is enabled. The following adjustments are applied to the fiber refractive index profile:

If
$$n > n_b$$
 then $n_{adj} = \sqrt{n_b^2(\lambda_\Delta) + \frac{n^2(\lambda) - n_b^2(\lambda)}{n_{d+}^2(\lambda) - n_b^2(\lambda)} \times (n_{d+}^2(\lambda_\Delta) - n_b^2(\lambda_\Delta))}$
If $n < n_b$ then $n_{adj} = \sqrt{n_b^2(\lambda_\Delta) - \frac{n_b^2(\lambda) - n^2(\lambda)}{n_b^2(\lambda) - n_{d-}^2(\lambda)} \times (n_b^2(\lambda_\Delta) - n_{d-}^2(\lambda_\Delta))}$

where n_b , n_{d+} , n_{d-} are the Sellmeier refractive indices for the base, dopant plus and dopant minus materials; respectively, λ is the mode solver reference wavelength, and λ_{Δ} is the offset wavelength (~0.01 nm) used to calculate the modal delay times.

The third method is to apply the variation principle to calculate the delay, avoiding the numerical errors of the derivative:

$$\tau_{m,n} = \frac{\frac{k}{\beta c} \iint N_{n,m}^2(x,y) E_i^2(x,y) dx dy}{\iint E_i^2(x,y) dx dy}$$

The coupling coefficient is calculated according to:

$$c_i = \int_{0}^{2\pi\infty} \int_{0}^{\infty} E_{in}(r,\phi) E_i^*(r,\phi) r dr d\phi$$
⁽⁸⁾

where E_i is the spatial profile for each m,n mode, including the *sin* and *cosine* factors, and E_{in} is the spatial input field.

The user can also generate a constant mode power distribution (MPD). In this case the coefficients will be constant. Enabling the parameter *Generate overfilled launch* can generate an overfilled launch mode.

After the calculation, the parameter *Report* will have a list of the modes, coupling coefficients, and delays for each mode and polarization.

Another advanced feature of this model is the graph calculations.

By enabling the parameter *Calculate graphs*, the user can see the results from the analytical mode solver. The results can include the mode index number for the calculated modes, the effective index, delays, power coupling, the refractive index profile, and spatial and radial profiles for the individual and overfilled mode.

The fiber model also includes the chromatic dispersion effects. If chromatic dispersion is enabled, the user can specify the value of the dispersion and dispersion slope, as well as Sellmeier approximations.

The parameter *Use Sellmeier approximations* defines whether to calculate dispersion and slope from the Sellmeier approximations[3]:

$$D = \frac{S_0}{4} \left(\lambda_r - \frac{\lambda_0^4}{\lambda_r^3} \right)^{(9)}$$
$$S = \frac{S_0}{4} \left(1 + 3 \frac{\lambda_0^4}{\lambda_r^4} \right)^{(10)}$$

Material parameters

The Material Properties tab allows the specification of the material dispersion model based on the Sellmeier theory. The fiber uses six Sellmeier coefficients, three wavelengths and three amplitudes, to define the dispersion curve.

$$n^{2}(\lambda) - 1 = \frac{A_{1} \cdot \lambda^{2}}{\lambda^{2} - \lambda_{1}^{2}} + \frac{A_{2} \cdot \lambda^{2}}{\lambda^{2} - \lambda_{2}^{2}} + \frac{A_{3} \cdot \lambda^{2}}{\lambda^{2} - \lambda_{3}^{2}}$$

Where n is the wavelength-dependent refractive index, A_1 , A_2 , and A_3 are the Sellmeier amplitudes, and λ_1 , λ_2 and λ_3 are the Sellmeier resonance wavelengths.

The material properties are internally defined based on the type of material selected (see <u>Table 2, "Sellmeier coefficients for various host and dopant materials," on</u> page 460) or, when "User defined" is selected, by a file containing the Sellmeier coefficients for that material. The file format must be similar to the following example

Figure 4 Material properties file

0.0684043	0.6961663
0.1162414	0.4079426
9.896161	0.897479

1....

Where the first column presents the wavelength Sellmeier coefficients and the second one the Sellmeier amplitude coefficients.

Table 2 Sellmeier coefficients for various host and dopant materials

Material				
----------	--	--	--	--

	А ₁	A ₂	A3	Lambda ₁	Lambda ₂	Lambda ₃
1% fluoride doped silica	0.69325	0.3972	0.86008	0.06723987	0.11714009	9.7760984
3% B ₂ 0 ₃ doped silica	0.6935408	0.4052977	0.9111432	0.0717021;	0.1256396	9.896154
3.1% Germania doped silica	0.7028554	0.4146307;	0.897454;	0.0727723	0.11430853;	9.8961609;
9.1% P ₂ O ₅ doped silica	0.91914	0.67072	0.5696	0.11921	0.00256	6.50697
GeO ₂ pure fused	0.80686642	0.71815848	0.85416831	0.06897261	0.1539661	11.841931
P205 pure	0.91914	0.67072	0.5696	0.11921	0.00256	6.50697
Silica pure	0.6961663	0.4079426	0.897479	0.0684043	0.1162414	9.896161
ZBLAN	1.168	2.77	0.0	0.0954	25	11.841931

Alpha profile

When using the alpha profile the following index profile is used[4]:

$$n(r) = n_{peak} \cdot \left(1 - \Delta \cdot \left[\frac{r}{a}\right]^{\alpha}\right) \quad \text{for } r < a$$

$$n(r) = n_{peak} \cdot (1 - \Delta) = n_{cladding}$$
 for $(r \ge a)$

where *a* is the core radius, Δ is the index contrast, and α is the alpha profile value

References

- [1] A. Ghatak, K. Thyagarajan, Introduction to Fiber Optics, Cambridge University Press, New York, NY, 1998.
- [2] OptiFiber 1.5 documentation, Optiwave Corporation, www.optiwave.com.
- [3] G.D. Brown, "Bandwidth and Rise Time Calculations for Digital Multimode Fiber-Optic Data Links", Journal of Lightwave Technology, VOL. 10, NO 5, May 1992, pp. 672-678.
- [4] Govind P. Agrawal, Fiber-Optic Communication Systems, 4th Edition, Wiley, Hoboken, NJ, 2010.

Notes:

