Optical power in two or more waveguides can be combined onto a single waveguide. This note describes general properties of a symmetric optical combiner, and shows simulations by OptiBPM. It is possible to achieve lossless operation, such that all the optical power at the inputs reaches the output. However, it turns out that lossless operation is only possible for specific input conditions. For example, if one of the inputs goes dark, there will be an inevitable 3 dB loss on the other arm. This note shows this surprising result in two ways: by theoretical means, and by detailed simulation of the optical propagation by OptiBPM.
Categories
OptiBPM Manuals
- OptiBPM Tutorials
- OptiBPM Applications
- BPM Technical Background
- Introduction
- Slowly Varying Envelope Approximation
- Differential Equations of BPM
- Semi-Vector and Scalar BPM
- Crank-Nicholson Method and Scheme Parameter
- ADI
- Boundary Conditions for BPM
- Perfectly Matched Layer (PML)
- Wide-Angle Beam Propagation Method
- Finite Difference Beam Propagation Method (FD-BPM) with Perfectly Matched Layers
- Finite Difference Beam Propagation Method (FD-BPM) with Transparent Boundary Conditions
- Finite Element Beam Propagation Method (FE-BPM) with Perfectly Matched Layers
- Wide-Angle Beam Propagation Method based on Pade Approximant Operators
- Fresnel Approximation (Pade 0th Order)
- Wide Angle (WA), Pade(1,1)
- Wide Angle (WA), Pade(2,2)
- Wide Angle (WA), Pade(3,3)
- Wide Angle (WA), Pade(4,4)
- References
- Conformal Mapping Regions
- Diffusion in Lithium Niobate
- Electro-optic Effect
- Scattering Data
- Introduction
- Modeling of the Optical Components – Survey of Methods
- Circuit Complexity Introduction
- Huge BPM Devices (“mux/demux”)
- Multidirectional BPM Device
- Devices Consisting of the Combination of BPM & Gratings (“Add/Drop”)
- Devices out of Scope of the BPM Technique (ring resonator)
- Scattering Data Approach
- Implementation with OptiSystem
- Solutions using OptiSystem
- Four Channel Mach-Zehnder Multi/Demultiplexer
- The MZI – ‘Loopy’
- Add/Drop Bragg MZI
- Ring Resonator
- References
- Non-linear BPM Algorithm
- Manual Calculation Method
- Vectoral Beam Propagation for Anisotropic Waveguides
- Vectoral Modal Analysis for Anisotropic Waveguides
- Fiber Mode Solvers
- Finite Difference Mode Solver
- Lesson 1: Getting Started
- Before Installation
- Installation
- Introduction to OptiBPM
- Introduction to Optical Waveguides
- Quick Start
- GUI Main Parts
- How to use OptiBPM
- Defining Materials
- Defining 2D and 3D Channel Profiles
- Defining the Layout Settings
- Creating a Basic Project
- Inserting the Input Plane
- Running the Simulation
- Selecting the Master Library Path
- Lesson 2: Create a Simple MMI Coupler
- Lesson 3: Create a Single-Bend Device
- Lesson 4: Create an MMI Star Coupler
- Lesson 5: Wavelength Scripting with VB Script
- Lesson 6: Design a 3dB Coupler using VB Script
- Lesson 7: Applying Predefined Diffusion Processes
- Lesson 8: 3D OptiMode Solver - COST Project Waveguide
- Lesson 9: Create a Chip-to-Fiber Butt Coupler
- Lesson 10: Electro-Optic Modulator
- Lesson 11: Integrated Optical Circuit Simulation using OptiBPM and OptiSystem - Scattering Data Export
- Lesson 12: Scan the Refractive Index (RI)
- Lesson 13: Applying User-defined Diffusion Profiles
- Lesson 14: Mach-Zehnder Interferometer Switch
Next Speech: “The Role of Software in the Design and Simulation of Optical & Photonics Devices, Components and Systems”
May 12, 2022
I2MTC 2022 Expert Panel Session on Optical Instrumentation & Measurement in High-Tech Sector 19 May 2022 The IEEE I2MTC – International Instrumentation and Measurement Technology Conference – is the flagship conference of the IEEE Instrumentation and Measurement Society and is dedicated to advances in measurement methodologies, measurement systems, instrumentation and sensors in all areas…
Evaluations
Get access to all our software tools instantly! No need to speak with a sales representative.