- To observe nonlinear effects in common used materials, a high-intensity light source is required. You should pay special attention to the input wave amplitude and/or the power level; each model with different parameters may need different input power or amplitude. If the input power is too low, you may not observe the nonlinear phenomenon. If the power is too strong, the nonlinear effect may be over saturable.
- The OptiFDTD takes Lorentz dispersive effect to the nonlinear effect. But it can work independently.
Categories
OptiFDTD Manuals
- Background and Tutorials
- Applications
- Symmetric Lossless X Coupler
- Power Combiner
- VFEM Accuracy and Advantages
- Plasmon Polaritons – Vector Finite Element Method
- Hollow Core Fiber – Vector Finite Element Method
- Plasmonic Arrays
- Surface Plasmon
- Diffraction Grating
- Photonic Crystal
- Nanoparticle
- Silicon Nanowire for Photovoltaic Applications
- Nano-Lens and Micro-Lens Simulations
- Light Scattering from Single Biological Cells
- Optical Grating simulations using OptiFDTD
- Photonic Bandgap Micro-cavity in Optical Waveguide
- OptiFDTD Overview
- Overview
- Material Models
- Material Models Introduction
- Constant Dielectrics
- Lossy Dielectrics
- Lorentz-Drude Model
- Nonlinear Material
- Dispersive 2nd-Order Nonlinear Material
- Dispersive 3rd-Order Nonlinear Material
- Dispersive Kerr Effect
- Dispersive Raman Effect
- Nonlinearity Simulation
- Lorentz-Drude Model in Frequency Domain
- Lorentz-Drude Model in Time Domain
- References
- Boundary Conditions
- Input Wave
- 2D FDTD Band Solver
- Post-Simulation Data Analysis
- Plane Wave Expansion (PWE) Method
- Power Transmittance Calculation with VB Scripting
- Layout Designer
- 32-bit vs 64-bit
- Lesson 1 - Getting Started
- Lesson 2 - Input Wave Setup
- Lesson 3 - Photonic Crystal and Photonic Band Gap
- Lesson 4 - Multiple Resonant Lorentz Dispersive Material
- Lesson 5 - Drude Model for Noble Metal and Surface Plasma
- Lesson 6 - Second Order Nonlinearity
- Lesson 7 - Four Wave Mixing
- Lesson 8 - Plane Wave Simulation
- Lesson 9 - FDTD Band Solver
- Lesson 10 - Lorentz-Drude Model for Metal and Surface Plasma
- Lesson 11 - Analyzing 1D Photonic Crystals (Bragg Gratings)
- Lesson 12 - Analyzing 2D Photonic Crystals
- Lesson 13 - Analyzing 3D Photonic Crystals
- Lesson 14 - Analyzing 2D Defects in Photonic Crystals
- Lesson 15 - Grating Simulation
- Lesson 16 - Calculating Power Transmittance and Reflection using VB Script
- Lesson 17 - Parameter Sweep Simulation
- Lesson 18 - 64-bit 3D Simulator
- Lesson 19 - Heating Absorption
- Lesson 20 - 2D TF/SF Simulation and RCS Detection
- Lesson 21 - 3D Surface Plasmon
- Lesson 22 - 3D Layout using Non-Uniform Mesh
- Applications
Optiwave Invites you to ETOP 2023
May 4, 2023
Cocoa Beach, FL, USA 15 – 18 May 2023 We are thrilled to announce that we will participate in the upcoming ETOP 2023 conference. This event is one of the most important gatherings for academic communities in our industry, and we are excited to be a part of it. ETOP, Education and Training in Optics…
Evaluations
Get access to all our software tools instantly! No need to speak with a sales representative.