Lesson 15 – Grating Simulation
Transmission and Reflection Spectrum from Grating Unit Cell
Silicon subwavelength gratings on quartz substrates can function as a color filter. This has been shown the following published paper: [1] Yoshiaki Kanamori, Masaya Shimono, and Kazuhiro Hane, “Fabrication of Transmission Color Filters Using Silicon Subwavelength Gratings on Quartz Substrates”, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 18, NO. 20, OCTOBER, 2006, pp. 2126-. The layout sketch taken…
Gratings Created with VB Script
Grating layouts in most cases are the periodic structure. There are two ways in OptiFDTD to realized the periodic layout: PBG editor and VB scripting, PBG layout and corresponding simulations are discussed in Lesson 3, Lesson 11 – 14. This lesson will focus the following features: • Using VB scripting to generate the grating (or…
Diffraction Efficiency and Diffraction Angle Based on Grating Unit Cell
This part shows how to extract the diffraction angle and diffraction efficiency based the FDTD near field simulation and far-field transform. The simulation concept is to use the FDTD method to get the near field pattern and near field transmission and reflection. The diffraction angle and power ratio for different diffraction beam can be evaluated from…
Categories
OptiFDTD Manuals
- Background and Tutorials
- Applications
- Symmetric Lossless X Coupler
- Power Combiner
- VFEM Accuracy and Advantages
- Plasmon Polaritons – Vector Finite Element Method
- Hollow Core Fiber – Vector Finite Element Method
- Plasmonic Arrays
- Surface Plasmon
- Diffraction Grating
- Photonic Crystal
- Nanoparticle
- Silicon Nanowire for Photovoltaic Applications
- Nano-Lens and Micro-Lens Simulations
- Light Scattering from Single Biological Cells
- Optical Grating simulations using OptiFDTD
- Photonic Bandgap Micro-cavity in Optical Waveguide
- OptiFDTD Overview
- Overview
- Material Models
- Material Models Introduction
- Constant Dielectrics
- Lossy Dielectrics
- Lorentz-Drude Model
- Nonlinear Material
- Dispersive 2nd-Order Nonlinear Material
- Dispersive 3rd-Order Nonlinear Material
- Dispersive Kerr Effect
- Dispersive Raman Effect
- Nonlinearity Simulation
- Lorentz-Drude Model in Frequency Domain
- Lorentz-Drude Model in Time Domain
- References
- Boundary Conditions
- Input Wave
- 2D FDTD Band Solver
- Post-Simulation Data Analysis
- Plane Wave Expansion (PWE) Method
- Power Transmittance Calculation with VB Scripting
- Layout Designer
- 32-bit vs 64-bit
- Lesson 1 - Getting Started
- Lesson 2 - Input Wave Setup
- Lesson 3 - Photonic Crystal and Photonic Band Gap
- Lesson 4 - Multiple Resonant Lorentz Dispersive Material
- Lesson 5 - Drude Model for Noble Metal and Surface Plasma
- Lesson 6 - Second Order Nonlinearity
- Lesson 7 - Four Wave Mixing
- Lesson 8 - Plane Wave Simulation
- Lesson 9 - FDTD Band Solver
- Lesson 10 - Lorentz-Drude Model for Metal and Surface Plasma
- Lesson 11 - Analyzing 1D Photonic Crystals (Bragg Gratings)
- Lesson 12 - Analyzing 2D Photonic Crystals
- Lesson 13 - Analyzing 3D Photonic Crystals
- Lesson 14 - Analyzing 2D Defects in Photonic Crystals
- Lesson 15 - Grating Simulation
- Lesson 16 - Calculating Power Transmittance and Reflection using VB Script
- Lesson 17 - Parameter Sweep Simulation
- Lesson 18 - 64-bit 3D Simulator
- Lesson 19 - Heating Absorption
- Lesson 20 - 2D TF/SF Simulation and RCS Detection
- Lesson 21 - 3D Surface Plasmon
- Lesson 22 - 3D Layout using Non-Uniform Mesh
- Applications
Optiwave Invites you to ETOP 2023
Evaluations
Get access to all our software tools instantly! No need to speak with a sales representative.